File size: 8,683 Bytes
97e363b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import os

import hydra

import aiflows
from aiflows.backends.api_info import ApiInfo
from aiflows.utils.general_helpers import read_yaml_file, quick_load_api_keys

from aiflows import logging
from aiflows.flow_cache import CACHING_PARAMETERS, clear_cache

from aiflows.utils import serving
from aiflows.workers import run_dispatch_worker_thread
from aiflows.messages import FlowMessage
from aiflows.interfaces import KeyInterface
from aiflows.utils.colink_utils import start_colink_server
from aiflows import flow_verse
import pandas as pd
import sys
from copy import deepcopy
import requests
import time

dependencies = [
    {
        "url": "aiflows/FunSearchFlowModule",
        "revision": "../FunSearchFlowModule"
    }
]
flow_verse.sync_dependencies(dependencies)
from flow_modules.aiflows.FunSearchFlowModule.Loader import Loader

logging.set_verbosity_debug()


def load_problem(id, ds_location = "./data/codeforces.jsonl.gz"):
    def make_problem_descriptions_str(row):
        def write_public_tests_individual_io_str(row):
            public_tests = row.public_tests_individual_io
            tests = ""
            for i,test in enumerate(public_tests):
                input = test[0]
                output = test[1]
                tests += f"Test {i+1}:\n  Input: {input}\n  Output: \'{output}\'\n"
            return tests
        
        problem_descritption = row.problem_description
        input_descriptions = row.input_description
        ouput_descriptions = row.output_description
        public_tests = write_public_tests_individual_io_str(row)
        
        problem_description_str = f"Problem Description:\n{problem_descritption}\n\n"
        input_description_str = f"Input Description:\n{input_descriptions}\n\n"
        output_description_str = f"Output Description:\n{ouput_descriptions}\n\n"
        public_tests_str = f"Public Tests:\n{public_tests}\n"
        
        final_str = problem_description_str + input_description_str + output_description_str +public_tests_str
        return final_str
    
    df = pd.read_json(ds_location, lines=True, compression='gzip')
    row = df[df.id == id].iloc[0]

    assert row.non_unique_output == False, "Problem has non unique output. Not supported yet"

    problem_description = make_problem_descriptions_str(row)
    public_test = row.public_tests_individual_io
    tests = {}
    test_counter = 1

    for public_test in public_test:
        tests["test_"+str(test_counter)] = {"tests_inputs": public_test[0], "expected_outputs": public_test[1]}
        test_counter += 1
        
    for hidden_test in row.hidden_tests_io:
        tests["test_"+str(test_counter)] = {"tests_inputs": hidden_test[0], "expected_outputs": hidden_test[1]}
        test_counter += 1
    
    return  tests, problem_description 

def download_codeforces_data(data_folder_path,file_name):
    print("Downloading data....")
    os.makedirs(data_folder_path, exist_ok=True)
    url = "https://github.com/epfl-dlab/cc_flows/raw/main/data/codeforces/codeforces.jsonl.gz"
    response = requests.get(url, stream=True)
    
    if response.status_code == 200:
        with open(os.path.join(data_folder_path,file_name), 'wb') as file:
            for chunk in response:
                file.write(chunk)
        print("Download complete")
    else:
        print("Failed to download data", response.status_code)
        

def get_configs(problem_id, ds_location = "./data/codeforces.jsonl.gz"):
    tests,  problem_description = load_problem(problem_id,ds_location)
    
    path = os.path.join(".", "demo.yaml")
    funsearch_cfg = read_yaml_file(path)
       
    evaluate_function_file_path: str = "./cf_functions.py"
    evaluate_function_name: str = "evaluate"
    evolve_function_name:str = "solve_function"
     
    loader = Loader(file_path = evaluate_function_file_path, target_name = evaluate_function_name)
    evaluate_function: str= loader.load_target()
    evaluate_file_full_content = loader.load_full_file()
    
    evaluate_file_full_content = f"\"\"\"{problem_description}\"\"\"\n\n" + evaluate_file_full_content
    
    #~~~~~ ProgramDBFlow Overrides ~~~~~~~~
    funsearch_cfg["subflows_config"]["ProgramDBFlow"]["evaluate_function"] = evaluate_function
    funsearch_cfg["subflows_config"]["ProgramDBFlow"]["evaluate_file_full_content"] = evaluate_file_full_content
    funsearch_cfg["subflows_config"]["ProgramDBFlow"]["artifact_to_evolve_name"] = evolve_function_name
    
    if len(tests) > 0:
        first_test = tests["test_1"]

        dummy_solution = f"def {evolve_function_name}(input) -> str:" +\
            "\n    \"\"\"Attempt at solving the problem given the input input and returns the predicted output (see the top of the file for problem description)\"\"\"" +\
            f"\n    return \'{first_test['expected_outputs']}\'\n"

    
    else:
        dummy_solution = f"def {evolve_function_name}(input) -> str:" +\
            "\n    \"\"\"Attempt at solving the problem given the input input and returns the predicted output (see the top of the file for problem description)\"\"\"" +\
            f"\n    return 0.0\"\"\n"
    
    #~~~~~~~~~~Evaluator overrides~~~~~~~~~~~~
    funsearch_cfg["subflows_config"]["EvaluatorFlow"]["py_file"] = evaluate_file_full_content
    funsearch_cfg["subflows_config"]["EvaluatorFlow"]["run_error_score"] = -1
    funsearch_cfg["subflows_config"]["EvaluatorFlow"]["function_to_run_name"] = evaluate_function_name
    funsearch_cfg["subflows_config"]["EvaluatorFlow"]["test_inputs"] = tests
    #Hides test inputs from LLM (necessary for hidden tests. Makes same setup as in a real contest.)
    funsearch_cfg["subflows_config"]["EvaluatorFlow"]["use_test_input_as_key"] = False
   
    
    #~~~~~~~~~~Sampler overrides~~~~~~~~~~~~  
    funsearch_cfg["subflows_config"]["SamplerFlow"]["system_message_prompt_template"]["partial_variables"] = \
        {
            "evaluate_name": evaluate_function_name,
            "evolve_name": evolve_function_name,
            "artifacts_per_prompt": 2
        }
        
        
    return funsearch_cfg, dummy_solution


FLOW_MODULES_PATH = "./"


if __name__ == "__main__":
    
    cl = start_colink_server()
    
    problem_id = "1789B" #put the problem id here
    
    if not os.path.exists("./data/codeforces.jsonl.gz"):
        download_codeforces_data("./data", "codeforces.jsonl.gz")
   
    funsearch_cfg, dummy_solution = get_configs(problem_id)
    #Serve Program Database and get its flow type explicitly
    api_information = [ApiInfo(backend_used="openai",
                              api_key = os.getenv("OPENAI_API_KEY"))]
    
    serving.recursive_serve_flow(
        cl=cl,
        flow_class_name="flow_modules.aiflows.FunSearchFlowModule.FunSearch",
        flow_endpoint="FunSearch",
    )
    
    # #Serve the rest
    # serving.recursive_serve_flow(
    #     cl=cl,
    #     flow_type="FunSearch_served",
    #     default_config=funsearch_cfg,
    #     default_state=None,
    #     default_dispatch_point="coflows_dispatch",
    # )
    n_workers = 10
    for i in range(n_workers):
        run_dispatch_worker_thread(cl)
    
    quick_load_api_keys(funsearch_cfg, api_information, key="api_infos")
    config_overrides = None
    #Mount ProgramDBFlow first to get it's flow ref
    funsearch_proxy = serving.get_flow_instance(
        cl=cl,
        flow_endpoint="FunSearch",
        config_overrides=funsearch_cfg,
    )
    
    data = {
        "from": "SamplerFlow",
        "operation": "register_program",
        "api_output": dummy_solution
    }
    
    input_message = funsearch_proxy.package_input_message(data = data)
    
    funsearch_proxy.send_message(input_message)
    
    
    data = {
        "from": "FunSearch",
        "operation": "start",
        "content": {"num_samplers": 5},
    }
    
    input_message = funsearch_proxy.package_input_message(data = data)
    
    funsearch_proxy.send_message(input_message)

    data = {
        "from": "FunSearch",
        "operation": "stop",
        "content": {},
    }
    
    input_message = funsearch_proxy.package_input_message(data = data)
    
    funsearch_proxy.send_message(input_message)
    
    
    wait_time = 1000
    print(f"Waiting {wait_time} seconds  before requesting result...")
    time.sleep(wait_time)

    data = {
        "from": "FunSearch",
        "operation": "get_best_programs_per_island",
        "content": {}
    }
    
    input_message = funsearch_proxy.package_input_message(data = data)
    
    future = funsearch_proxy.get_reply_future(input_message)
    print("waiting for response....")
    response = future.get_data()
    print(response)