File size: 12,064 Bytes
b52b47e
 
 
 
 
 
 
 
 
 
 
 
 
 
f56bea9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b52b47e
f56bea9
b52b47e
 
 
 
 
 
 
f56bea9
 
 
 
 
 
 
b52b47e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f56bea9
 
 
 
 
 
 
 
 
 
b52b47e
 
 
 
 
 
 
 
 
f56bea9
 
 
 
 
 
 
 
 
b52b47e
 
 
 
 
f56bea9
 
 
 
 
 
 
 
 
 
b52b47e
 
 
 
 
 
 
 
 
 
f56bea9
 
 
 
 
 
 
 
 
b52b47e
 
 
 
 
 
 
 
 
 
 
 
 
f56bea9
 
 
 
 
 
 
 
 
 
b52b47e
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import sys
from typing import Dict, Any

from flows.base_flows import CircularFlow
from flows.utils import logging

logging.set_verbosity_debug()

log = logging.get_logger(__name__)

from flow_modules.aiflows.ControllerExecutorFlowModule import ControllerAtomicFlow
from flow_modules.aiflows.VectorStoreFlowModule import ChromaDBFlow

class AutoGPTFlow(CircularFlow):
    """ This class implements a (very basic) AutoGPT flow. It is a flow that consists of multiple sub-flows that are executed circularly. It Contains the following subflows:
    
    - A Controller Flow: A Flow that controls which subflow of the Executor Flow to execute next.
    - A Memory Flow: A Flow used to save and retrieve messages or memories which might be useful for the Controller Flow.
    - A HumanFeedback Flow: A flow use to get feedback from the user/human.
    - A Executor Flow: A Flow that executes commands generated by the Controller Flow. Typically it's a branching flow (see BranchingFlow) and the commands are which branch to execute next.

    An illustration of the flow is as follows:
    
        | -------> Memory Flow -------> Controller Flow ------->|
        ^                                                       |      
        |                                                       |
        |                                                       v
        | <----- HumanFeedback Flow <------- Executor Flow <----|
    
    *Configuration Parameters*:
    
    - `name` (str): The name of the flow. Default is "AutoGPTFlow".
    - `description` (str): A description of the flow.  Default is "An example implementation of AutoGPT with Flows."
    - `max_rounds` (int): The maximum number of rounds the circular flow can run for. Default is 30.
    - `early_exit_key` (str): The key that is used to terminate the flow early. Default is "EARLY_EXIT".
    - `subflows_config` (Dict[str,Any]): A dictionary of subflows configurations. Default:
        - `Controller` (Dict[str,Any]): The configuration of the Controller Flow. By default the controller flow is a ControllerAtomicFlow (see ControllerExecutorFlowModule). It's default values are
        defined in ControllerAtomicFlow.yaml of the ControllerExecutorFlowModule. Except for the following parameters who are overwritten by the AutoGPTFlow in AutoGPTFlow.yaml:
            - `finish` (Dict[str,Any]): The configuration of the finish command (used to terminate the flow early when the controller has accomplished its goal).
                - `description` (str):  The description of the command. Default is "The finish command is used to terminate the flow early when the controller has accomplished its goal."
                - `input_args` (List[str]): The list of expected keys to run the finish command. Default is ["answer"].
                - `human_message_prompt_template`(Dict[str,Any]): The prompt template used to generate the message that is shown to the user/human when the finish command is executed. Default is:
                    - `template` (str): The template of the humand message prompt (see AutoGPTFlow.yaml for default template)
                    - `input_variables` (List[str]): The list of variables to be included in the template. Default is ["observation", "human_feedback", "memory"].
            - `ìnput_interface_initialized` (List[str]): The input interface that Controller Flow expects except for the first time in the flow. Default is ["observation", "human_feedback", "memory"].
        - `Executor` (Dict[str,Any]): The configuration of the Executor Flow. By default the executor flow is a Branching Flow (see BranchingFlow). It's default values are the default values of the BranchingFlow. Fields to define:
            - `subflows_config` (Dict[str,Any]):  A Dictionary of subflows configurations.The keys are the names of the subflows and the values are the configurations of the subflows. Each subflow is a branch of the branching flow.
        - `HumanFeedback` (Dict[str,Any]): The configuration of the HumanFeedback Flow. By default the human feedback flow is a HumanStandardInputFlow (see HumanStandardInputFlowModule ).
        It's default values are specified in the REAMDE.md of HumanStandardInputFlowModule. Except for the following parameters who are overwritten by the AutoGPTFlow in AutoGPTFlow.yaml:
            - `request_multi_line_input_flag` (bool): Flag to request multi-line input. Default is False.
            - `query_message_prompt_template` (Dict[str,Any]): The prompt template presented to the user/human to request input. Default is:
                - `template` (str): The template of the query message prompt (see AutoGPTFlow.yaml for default template)
                - `input_variables` (List[str]): The list of variables to be included in the template. Default is ["goal","command","command_args",observation"]
            - input_interface_initialized (List[str]):  The input interface that HumanFeeback Flow expects except for the first time in the flow. Default is ["goal","command","command_args",observation"]
        - `Memory` (Dict[str,Any]): The configuration of the Memory Flow. By default the memory flow is a ChromaDBFlow (see VectorStoreFlowModule). It's default values are defined in ChromaDBFlow.yaml of the VectorStoreFlowModule. Except for the following parameters who are overwritten by the AutoGPTFlow in AutoGPTFlow.yaml:
            - `n_results`: The number of results to retrieve from the memory. Default is 2.
    - `topology` (List[Dict[str,Any]]): The topology of the flow which is "circular". By default, the topology is the one shown in the illustration above (the topology is also described in AutoGPTFlow.yaml).

        
    *Input Interface*:
            
    - `goal` (str): The goal of the flow.
        
    *Output Interface*:

    - `answer` (str): The answer of the flow.
    - `status` (str): The status of the flow. It can be "finished" or "unfinished".
            
    :param flow_config: The configuration of the flow. Contains the parameters described above and the parameters required by the parent class (CircularFlow).
    :type flow_config: Dict[str,Any]
    :param subflows: A list of subflows constituating the circular flow. Required when instantiating the subflow programmatically (it replaces subflows_config from flow_config).
    :type subflows: List[Flow]
    """
    def _on_reach_max_round(self):
        """ This method is called when the flow reaches the max_rounds."""
        self._state_update_dict({
            "answer": "The maximum amount of rounds was reached before the model found an answer.",
            "status": "unfinished"
        })

    @staticmethod
    def _get_memory_key(flow_state):
        """ This method returns the memory key that is used to retrieve memories from the ChromaDB model.
        
        :param flow_state: The state of the flow
        :type flow_state: Dict[str, Any]
        :return: The current context
        :rtype: str
        """
        goal = flow_state.get("goal")
        last_command = flow_state.get("command")
        last_command_args = flow_state.get("command_args")
        last_observation = flow_state.get("observation")
        last_human_feedback = flow_state.get("human_feedback")

        if last_command is None:
            return ""

        assert goal is not None, goal
        assert last_command_args is not None, last_command_args
        assert last_observation is not None, last_observation

        current_context = \
            f"""
            == Goal == 
            {goal}
            
            == Command ==
            {last_command}
            == Args
            {last_command_args}
            == Result
            {last_observation}

            == Human Feedback ==
            {last_human_feedback}
            """

        return current_context

    @CircularFlow.input_msg_payload_builder
    def prepare_memory_read_input(self, flow_state: Dict[str, Any], dst_flow: ChromaDBFlow) -> Dict[str, Any]:
        """ This method prepares the input for the Memory Flow. It is called before the Memory Flow is called.
            A (very) basic example implementation of how the memory retrieval could be constructed.
            
        :param flow_state: The state of the flow
        :type flow_state: Dict[str, Any]
        :param dst_flow: The destination flow
        :type dst_flow: Flow
        :return: The input message for the Memory Flow
        :rtype: Dict[str, Any]
        """
        query = self._get_memory_key(flow_state)

        return {
            "operation": "read",
            "content": query
        }

    @CircularFlow.output_msg_payload_processor
    def prepare_memory_read_output(self, output_payload: Dict[str, Any], src_flow: ControllerAtomicFlow):
        """ This method processes the output of the Memory Flow. It is called after the Memory Flow is called.
        
        :param output_payload: The output payload of the Memory Flow
        :type output_payload: Dict[str, Any]
        :param src_flow: The source flow
        :type src_flow: Flow
        :return: The processed output payload
        :rtype: Dict[str, Any]
        """
        retrieved_memories = output_payload["retrieved"][0][1:]
        return {"memory": "\n".join(retrieved_memories)}

    @CircularFlow.input_msg_payload_builder
    def prepare_memory_write_input(self, flow_state: Dict[str, Any], dst_flow: ChromaDBFlow) -> Dict[str, Any]:
        """ This method prepares the input for the Memory Flow. It is called before the Memory Flow is called.
            A (very) basic example implementation of how the memory population could be constructed.
            
        :param flow_state: The state of the flow
        :type flow_state: Dict[str, Any]
        :param dst_flow: The destination flow
        :type dst_flow: Flow
        :return: The input message to write the Memory Flow
        :rtype: Dict[str, Any]
        """""
        query = self._get_memory_key(flow_state)

        return {
            "operation": "write",
            "content": str(query)
        }

    @CircularFlow.output_msg_payload_processor
    def detect_finish_or_continue(self, output_payload: Dict[str, Any], src_flow: ControllerAtomicFlow) -> Dict[
        str, Any]:
        """ This method detects whether the Controller flow has generated a "finish" command or not to terminate the flow. . It is called after the Controller Flow is called.
        
        :param output_payload: The output payload of the Controller Flow
        :type output_payload: Dict[str, Any]
        :param src_flow: The source flow
        :type src_flow: Flow
        :return: The processed output payload
        :rtype: Dict[str, Any]
        """
        command = output_payload["command"]
        if command == "finish":
            return {
                "EARLY_EXIT": True,
                "answer": output_payload["command_args"]["answer"],
                "status": "finished"
            }
        else:
            return output_payload

    @CircularFlow.output_msg_payload_processor
    def detect_finish_in_human_input(self, output_payload: Dict[str, Any], src_flow: ControllerAtomicFlow) -> Dict[
        str, Any]:
        """ This method detects whether the HumanFeedback (the human/user) flow has generated a "finish" command or not to terminate the flow. It is called after the HumanFeedback Flow is called.
        
        :param output_payload: The output payload of the HumanFeedback Flow
        :type output_payload: Dict[str, Any]
        :param src_flow: The source flow
        :type src_flow: Flow
        :return: The processed output payload
        :rtype: Dict[str, Any]
        """
        
        human_feedback = output_payload["human_input"]
        if human_feedback.strip().lower() == "q":
            return {
                "EARLY_EXIT": True,
                "answer": "The user has chosen to exit before a final answer was generated.",
                "status": "unfinished"
            }

        return {"human_feedback": human_feedback}