File size: 1,530 Bytes
d8bb207 029ce31 d8bb207 a2b9e7c d8bb207 25ca18c a2b9e7c 25ca18c 0e4b446 d8bb207 0c7ce6f 2e3a2f1 73e9211 a2b9e7c d8bb207 46539f6 0c7ce6f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
---
language:
- en
inference: false
datasets:
- conll2003
- wnut_17
- jnlpba
- conll2012
- BTC
- dfki-nlp/few-nerd
tags:
- PyTorch
model-index:
- name: "bert-base-NER-reptile-5-datasets"
results:
- task:
name: few-shot-ner-on-few-nerd-inter
type: named-entity-recognition
dataset:
name: Few-NERD (INTER)
type: named-entity-recognition
metrics:
- name: 5 way 1~2 shot
type: f1
value: 56.12
- name: 5-way 5~10-shot
type: f1
value: 62.7
- name: 10-way 1~2-shot
type: f1
value: 50.3
- name: 10-way 5~10-shot
type: f1
value: 58.82
---
# BERT base uncased model pre-trained on 5 NER datasets
Model was trained by _SberIDP_. The pretraining process and technical details are described [in this article](https://habr.com/ru/company/sberbank/blog/).
* Task: Named Entity Recognition
* Training Data is 5 datasets: [CoNLL-2003](https://aclanthology.org/W03-0419.pdf), [WNUT17](http://noisy-text.github.io/2017/emerging-rare-entities.html), [JNLPBA](http://www.geniaproject.org/shared-tasks/bionlp-jnlpba-shared-task-2004), [CoNLL-2012 (OntoNotes)](https://aclanthology.org/W12-4501.pdf), [BTC](https://www.derczynski.com/papers/btc.pdf)
* Testing was made in Few-Shot scenario on [Few-NERD dataset](https://github.com/thunlp/Few-NERD)
The model is pretrained for NER task using [Reptile](https://openai.com/blog/reptile/) and can be finetuned for new entities with only a small amount of samples. |