bert-large-cased / README.md
librarian-bot's picture
Librarian Bot: Add base_model information to model
018aed3
|
raw
history blame
2.28 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - silicone
metrics:
  - accuracy
base_model: bert-large-cased
model-index:
  - name: bert-large-cased
    results:
      - task:
          type: text-classification
          name: Text Classification
        dataset:
          name: silicone
          type: silicone
          config: swda
          split: test
          args: swda
        metrics:
          - type: accuracy
            value: 0.7280766396462786
            name: Accuracy

bert-large-cased

This model is a fine-tuned version of bert-large-cased on the silicone dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8807
  • Accuracy: 0.7281
  • Micro-precision: 0.7281
  • Micro-recall: 0.7281
  • Micro-f1: 0.7281
  • Macro-precision: 0.4591
  • Macro-recall: 0.3825
  • Macro-f1: 0.3855
  • Weighted-precision: 0.6943
  • Weighted-recall: 0.7281
  • Weighted-f1: 0.6977

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Accuracy Micro-precision Micro-recall Micro-f1 Macro-precision Macro-recall Macro-f1 Weighted-precision Weighted-recall Weighted-f1
0.8835 1.0 2980 0.8807 0.7281 0.7281 0.7281 0.7281 0.4591 0.3825 0.3855 0.6943 0.7281 0.6977

Framework versions

  • Transformers 4.26.0
  • Pytorch 1.13.1+cu116
  • Datasets 2.9.0
  • Tokenizers 0.13.2