--- license: apache-2.0 tags: - generated_from_trainer datasets: - silicone metrics: - accuracy base_model: bert-large-cased model-index: - name: bert-large-cased results: - task: type: text-classification name: Text Classification dataset: name: silicone type: silicone config: swda split: test args: swda metrics: - type: accuracy value: 0.7280766396462786 name: Accuracy --- # bert-large-cased This model is a fine-tuned version of [bert-large-cased](https://huggingface.co/bert-large-cased) on the silicone dataset. It achieves the following results on the evaluation set: - Loss: 0.8807 - Accuracy: 0.7281 - Micro-precision: 0.7281 - Micro-recall: 0.7281 - Micro-f1: 0.7281 - Macro-precision: 0.4591 - Macro-recall: 0.3825 - Macro-f1: 0.3855 - Weighted-precision: 0.6943 - Weighted-recall: 0.7281 - Weighted-f1: 0.6977 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Micro-precision | Micro-recall | Micro-f1 | Macro-precision | Macro-recall | Macro-f1 | Weighted-precision | Weighted-recall | Weighted-f1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------------:|:------------:|:--------:|:---------------:|:------------:|:--------:|:------------------:|:---------------:|:-----------:| | 0.8835 | 1.0 | 2980 | 0.8807 | 0.7281 | 0.7281 | 0.7281 | 0.7281 | 0.4591 | 0.3825 | 0.3855 | 0.6943 | 0.7281 | 0.6977 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2