File size: 1,727 Bytes
713652a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7e0bdd
713652a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7e0bdd
 
713652a
e7e0bdd
 
713652a
e7e0bdd
 
713652a
e7e0bdd
713652a
 
 
 
 
 
e7e0bdd
 
 
 
 
713652a
 
 
 
e7e0bdd
 
713652a
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
base_model: mistralai/Mistral-7B-Instruct-v0.2
model-index:
- name: mistral_instruct
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# mistral_instruct

This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0892

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- lr_scheduler_warmup_steps: 2
- num_epochs: 1
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.0643        | 0.17  | 100  | 1.1166          |
| 1.0302        | 0.34  | 200  | 1.1029          |
| 1.1972        | 0.51  | 300  | 1.0958          |
| 1.1332        | 0.68  | 400  | 1.0910          |
| 1.0084        | 0.85  | 500  | 1.0892          |


### Framework versions

- PEFT 0.10.0
- Transformers 4.39.0
- Pytorch 2.1.2
- Datasets 2.1.0
- Tokenizers 0.15.2