File size: 1,892 Bytes
47b029a dd68b55 47b029a dd68b55 47b029a dd68b55 47b029a 0ac6fd7 47b029a dd68b55 47b029a 0ac6fd7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- fairytale_qa
metrics:
- rouge
model-index:
- name: t5-base-QG-finetuned-FairytaleQA
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: fairytale_qa
type: fairytale_qa
config: default
split: validation
args: default
metrics:
- name: Rouge1
type: rouge
value: 45.1292
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-base-QG-finetuned-FairytaleQA
This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the fairytale_qa dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0876
- Rouge1: 45.1292
- Rouge2: 26.5987
- Rougel: 43.2701
- Rougelsum: 43.2744
- Gen Len: 15.1024
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| 1.1882 | 1.0 | 2137 | 1.0876 | 45.1292 | 26.5987 | 43.2701 | 43.2744 | 15.1024 |
### Framework versions
- Transformers 4.28.0
- Pytorch 2.0.1+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3
|