ahishamm's picture
update model card README.md
8130bdb
metadata
license: apache-2.0
tags:
  - image-classification
  - generated_from_trainer
metrics:
  - accuracy
  - recall
  - f1
  - precision
model-index:
  - name: vit-base-binary-isic-sharpened-patch-16
    results: []

vit-base-binary-isic-sharpened-patch-16

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the ahishamm/isic_binary_sharpened dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2583
  • Accuracy: 0.8912
  • Recall: 0.8912
  • F1: 0.8912
  • Precision: 0.8912

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss Accuracy Recall F1 Precision
0.3281 0.09 100 0.4381 0.8183 0.8183 0.8183 0.8183
0.3212 0.18 200 0.3179 0.8503 0.8503 0.8503 0.8503
0.2864 0.28 300 0.3126 0.8655 0.8655 0.8655 0.8655
0.2692 0.37 400 0.3217 0.8599 0.8599 0.8599 0.8599
0.3195 0.46 500 0.3061 0.8694 0.8694 0.8694 0.8694
0.2095 0.55 600 0.2910 0.8669 0.8669 0.8669 0.8669
0.2168 0.65 700 0.3248 0.8730 0.8730 0.8730 0.8730
0.2288 0.74 800 0.3067 0.8553 0.8553 0.8553 0.8553
0.2521 0.83 900 0.2723 0.8689 0.8689 0.8689 0.8689
0.1953 0.92 1000 0.2729 0.8724 0.8724 0.8724 0.8724
0.2845 1.02 1100 0.4392 0.8666 0.8666 0.8666 0.8666
0.1484 1.11 1200 0.3031 0.8884 0.8884 0.8884 0.8884
0.153 1.2 1300 0.2849 0.8992 0.8992 0.8992 0.8992
0.1648 1.29 1400 0.2583 0.8912 0.8912 0.8912 0.8912
0.1627 1.39 1500 0.2706 0.8933 0.8933 0.8933 0.8933
0.0943 1.48 1600 0.2783 0.9034 0.9034 0.9034 0.9034
0.0624 1.57 1700 0.2921 0.8926 0.8926 0.8926 0.8926
0.12 1.66 1800 0.2915 0.9006 0.9006 0.9006 0.9006
0.0735 1.76 1900 0.3103 0.8897 0.8897 0.8897 0.8897
0.0609 1.85 2000 0.3382 0.8971 0.8971 0.8971 0.8971
0.1645 1.94 2100 0.2675 0.8901 0.8901 0.8901 0.8901
0.0839 2.03 2200 0.3941 0.8962 0.8962 0.8962 0.8962
0.0571 2.13 2300 0.3888 0.9047 0.9047 0.9047 0.9047
0.0929 2.22 2400 0.3773 0.9009 0.9009 0.9009 0.9009
0.0378 2.31 2500 0.4577 0.9029 0.9029 0.9029 0.9029
0.0085 2.4 2600 0.3183 0.9203 0.9203 0.9203 0.9203
0.06 2.5 2700 0.3548 0.9126 0.9126 0.9126 0.9126
0.0139 2.59 2800 0.3213 0.9198 0.9198 0.9198 0.9198
0.056 2.68 2900 0.3558 0.9131 0.9131 0.9131 0.9131
0.0433 2.77 3000 0.3101 0.9215 0.9215 0.9215 0.9215
0.0074 2.87 3100 0.3140 0.9176 0.9176 0.9176 0.9176
0.0216 2.96 3200 0.3657 0.9186 0.9186 0.9186 0.9186
0.0118 3.05 3300 0.3722 0.9195 0.9195 0.9195 0.9195
0.0014 3.14 3400 0.4089 0.9141 0.9141 0.9141 0.9141
0.001 3.23 3500 0.4045 0.9189 0.9189 0.9189 0.9189
0.0009 3.33 3600 0.3932 0.9230 0.9230 0.9230 0.9230
0.0009 3.42 3700 0.4257 0.9174 0.9174 0.9174 0.9174
0.03 3.51 3800 0.3981 0.9222 0.9222 0.9222 0.9222
0.0007 3.6 3900 0.4211 0.9189 0.9189 0.9189 0.9189
0.0494 3.7 4000 0.4029 0.9207 0.9207 0.9207 0.9207
0.0009 3.79 4100 0.3951 0.9226 0.9226 0.9226 0.9226
0.0319 3.88 4200 0.3944 0.9221 0.9221 0.9221 0.9221
0.0013 3.97 4300 0.3894 0.9225 0.9225 0.9225 0.9225

Framework versions

  • Transformers 4.30.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.13.1
  • Tokenizers 0.13.3