|
|
|
--- |
|
tags: |
|
- bertopic |
|
library_name: bertopic |
|
pipeline_tag: text-classification |
|
--- |
|
|
|
# bertopic-test_1010 |
|
|
|
This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model. |
|
BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets. |
|
|
|
## Usage |
|
|
|
To use this model, please install BERTopic: |
|
|
|
``` |
|
pip install -U bertopic |
|
``` |
|
|
|
You can use the model as follows: |
|
|
|
```python |
|
from bertopic import BERTopic |
|
topic_model = BERTopic.load("ahessamb/bertopic-test_1010") |
|
|
|
topic_model.get_topic_info() |
|
``` |
|
|
|
## Topic overview |
|
|
|
* Number of topics: 10 |
|
* Number of training documents: 1570 |
|
|
|
<details> |
|
<summary>Click here for an overview of all topics.</summary> |
|
|
|
| Topic ID | Topic Keywords | Topic Frequency | Label | |
|
|----------|----------------|-----------------|-------| |
|
| 0 | ethereum - listings - market - eth - binance | 173 | 0_ethereum_listings_market_eth | |
|
| 1 | xrp - ripple - crypto - mekras - sbi | 93 | 1_xrp_ripple_crypto_mekras | |
|
| 2 | peaq - blockchain - nft - opensea - ordibots | 226 | 2_peaq_blockchain_nft_opensea | |
|
| 3 | crypto - regulatory - securities - coinbase - lawsuit | 204 | 3_crypto_regulatory_securities_coinbase | |
|
| 4 | binance - exchange - securities - sec - letter | 116 | 4_binance_exchange_securities_sec | |
|
| 5 | mutant - mayc - bayc - club - mcmullen | 95 | 5_mutant_mayc_bayc_club | |
|
| 6 | tether - yuan - games - bitcoin - cbdcs | 211 | 6_tether_yuan_games_bitcoin | |
|
| 7 | crypto - bills - exponential - markets - liquidity | 140 | 7_crypto_bills_exponential_markets | |
|
| 8 | ada - cardano - litecoin - resistance - market | 214 | 8_ada_cardano_litecoin_resistance | |
|
| 9 | shib - doge - shiba - sentiment - market | 98 | 9_shib_doge_shiba_sentiment | |
|
|
|
</details> |
|
|
|
## Training hyperparameters |
|
|
|
* calculate_probabilities: False |
|
* language: None |
|
* low_memory: False |
|
* min_topic_size: 10 |
|
* n_gram_range: (1, 1) |
|
* nr_topics: None |
|
* seed_topic_list: None |
|
* top_n_words: 10 |
|
* verbose: False |
|
|
|
## Framework versions |
|
|
|
* Numpy: 1.22.4 |
|
* HDBSCAN: 0.8.29 |
|
* UMAP: 0.5.3 |
|
* Pandas: 1.5.3 |
|
* Scikit-Learn: 1.2.2 |
|
* Sentence-transformers: 2.2.2 |
|
* Transformers: 4.30.2 |
|
* Numba: 0.56.4 |
|
* Plotly: 5.13.1 |
|
* Python: 3.10.12 |
|
|