bertopic-test_1010 / README.md
ahessamb's picture
Add BERTopic model
b57b8ec
metadata
tags:
  - bertopic
library_name: bertopic
pipeline_tag: text-classification

bertopic-test_1010

This is a BERTopic model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.

Usage

To use this model, please install BERTopic:

pip install -U bertopic

You can use the model as follows:

from bertopic import BERTopic
topic_model = BERTopic.load("ahessamb/bertopic-test_1010")

topic_model.get_topic_info()

Topic overview

  • Number of topics: 10
  • Number of training documents: 1570
Click here for an overview of all topics.
Topic ID Topic Keywords Topic Frequency Label
0 ethereum - listings - market - eth - binance 173 0_ethereum_listings_market_eth
1 xrp - ripple - crypto - mekras - sbi 93 1_xrp_ripple_crypto_mekras
2 peaq - blockchain - nft - opensea - ordibots 226 2_peaq_blockchain_nft_opensea
3 crypto - regulatory - securities - coinbase - lawsuit 204 3_crypto_regulatory_securities_coinbase
4 binance - exchange - securities - sec - letter 116 4_binance_exchange_securities_sec
5 mutant - mayc - bayc - club - mcmullen 95 5_mutant_mayc_bayc_club
6 tether - yuan - games - bitcoin - cbdcs 211 6_tether_yuan_games_bitcoin
7 crypto - bills - exponential - markets - liquidity 140 7_crypto_bills_exponential_markets
8 ada - cardano - litecoin - resistance - market 214 8_ada_cardano_litecoin_resistance
9 shib - doge - shiba - sentiment - market 98 9_shib_doge_shiba_sentiment

Training hyperparameters

  • calculate_probabilities: False
  • language: None
  • low_memory: False
  • min_topic_size: 10
  • n_gram_range: (1, 1)
  • nr_topics: None
  • seed_topic_list: None
  • top_n_words: 10
  • verbose: False

Framework versions

  • Numpy: 1.22.4
  • HDBSCAN: 0.8.29
  • UMAP: 0.5.3
  • Pandas: 1.5.3
  • Scikit-Learn: 1.2.2
  • Sentence-transformers: 2.2.2
  • Transformers: 4.30.2
  • Numba: 0.56.4
  • Plotly: 5.13.1
  • Python: 3.10.12