Create pipeline.py
Browse files- pipeline.py +46 -0
pipeline.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, List, Any
|
2 |
+
import PIL
|
3 |
+
import torch
|
4 |
+
import base64
|
5 |
+
import os
|
6 |
+
import io
|
7 |
+
from transformers import ViTImageProcessor, ViTModel
|
8 |
+
|
9 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
10 |
+
|
11 |
+
|
12 |
+
class PreTrainedPipeline():
|
13 |
+
def __init__(self, path=""):
|
14 |
+
self.model = ViTModel.from_pretrained(
|
15 |
+
pretrained_model_name_or_path=os.path.join(
|
16 |
+
path, 'pytorch_model.bin'),
|
17 |
+
config=os.path.join(path, 'config.json')
|
18 |
+
)
|
19 |
+
self.model.eval()
|
20 |
+
self.model = self.model.to(device)
|
21 |
+
|
22 |
+
self.processor = ViTImageProcessor.from_pretrained(
|
23 |
+
pretrained_model_name_or_path=os.path.join(
|
24 |
+
path, 'preprocessor_config.json')
|
25 |
+
)
|
26 |
+
|
27 |
+
def __call__(self, data: Any) -> Dict[str, List[float]]:
|
28 |
+
"""
|
29 |
+
Args:
|
30 |
+
data (:dict | str:):
|
31 |
+
Includes the input data and the parameters for the inference.
|
32 |
+
Inputs should be an image encoded in base 64.
|
33 |
+
Return:
|
34 |
+
A :obj:`dict`:. The object returned should be a dict like
|
35 |
+
{"feature_vector": [0.6331314444541931,...,-0.7866355180740356,]} containing :
|
36 |
+
- "feature_vector": A list of floats corresponding to the image embedding.
|
37 |
+
"""
|
38 |
+
inputs = data.pop("inputs", data)
|
39 |
+
|
40 |
+
# decode base64 image to PIL
|
41 |
+
image = PIL.Image.open(io.BytesIO(base64.b64decode(inputs['image'])))
|
42 |
+
inputs = self.processor(images=image, return_tensors="pt")
|
43 |
+
outputs = self.model(**inputs)
|
44 |
+
feature_vector = outputs.last_hidden_state[0, 0].tolist()
|
45 |
+
# postprocess the prediction
|
46 |
+
return {"feature_vector": feature_vector}
|