Duplicate from facebook/dino-vitb16
Browse filesCo-authored-by: Julien Chaumond <julien-c@users.noreply.huggingface.co>
- .gitattributes +27 -0
- README.md +73 -0
- config.json +20 -0
- preprocessor_config.json +17 -0
- pytorch_model.bin +3 -0
- tf_model.h5 +3 -0
.gitattributes
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
20 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
+
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- dino
|
5 |
+
- vision
|
6 |
+
datasets:
|
7 |
+
- imagenet-1k
|
8 |
+
---
|
9 |
+
|
10 |
+
# Vision Transformer (base-sized model, patch size 16) trained using DINO
|
11 |
+
|
12 |
+
Vision Transformer (ViT) model trained using the DINO method. It was introduced in the paper [Emerging Properties in Self-Supervised Vision Transformers](https://arxiv.org/abs/2104.14294) by Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, Armand Joulin and first released in [this repository](https://github.com/facebookresearch/dino).
|
13 |
+
|
14 |
+
Disclaimer: The team releasing DINO did not write a model card for this model so this model card has been written by the Hugging Face team.
|
15 |
+
|
16 |
+
## Model description
|
17 |
+
|
18 |
+
The Vision Transformer (ViT) is a transformer encoder model (BERT-like) pretrained on a large collection of images in a self-supervised fashion, namely ImageNet-1k, at a resolution of 224x224 pixels.
|
19 |
+
|
20 |
+
Images are presented to the model as a sequence of fixed-size patches (resolution 16x16), which are linearly embedded. One also adds a [CLS] token to the beginning of a sequence to use it for classification tasks. One also adds absolute position embeddings before feeding the sequence to the layers of the Transformer encoder.
|
21 |
+
|
22 |
+
Note that this model does not include any fine-tuned heads.
|
23 |
+
|
24 |
+
By pre-training the model, it learns an inner representation of images that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled images for instance, you can train a standard classifier by placing a linear layer on top of the pre-trained encoder. One typically places a linear layer on top of the [CLS] token, as the last hidden state of this token can be seen as a representation of an entire image.
|
25 |
+
|
26 |
+
## Intended uses & limitations
|
27 |
+
|
28 |
+
You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=google/vit) to look for
|
29 |
+
fine-tuned versions on a task that interests you.
|
30 |
+
|
31 |
+
### How to use
|
32 |
+
|
33 |
+
Here is how to use this model:
|
34 |
+
|
35 |
+
```python
|
36 |
+
from transformers import ViTImageProcessor, ViTModel
|
37 |
+
from PIL import Image
|
38 |
+
import requests
|
39 |
+
|
40 |
+
url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
|
41 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
42 |
+
|
43 |
+
processor = ViTImageProcessor.from_pretrained('facebook/dino-vitb16')
|
44 |
+
model = ViTModel.from_pretrained('facebook/dino-vitb16')
|
45 |
+
|
46 |
+
inputs = processor(images=image, return_tensors="pt")
|
47 |
+
outputs = model(**inputs)
|
48 |
+
last_hidden_states = outputs.last_hidden_state
|
49 |
+
```
|
50 |
+
|
51 |
+
### BibTeX entry and citation info
|
52 |
+
|
53 |
+
```bibtex
|
54 |
+
@article{DBLP:journals/corr/abs-2104-14294,
|
55 |
+
author = {Mathilde Caron and
|
56 |
+
Hugo Touvron and
|
57 |
+
Ishan Misra and
|
58 |
+
Herv{\'{e}} J{\'{e}}gou and
|
59 |
+
Julien Mairal and
|
60 |
+
Piotr Bojanowski and
|
61 |
+
Armand Joulin},
|
62 |
+
title = {Emerging Properties in Self-Supervised Vision Transformers},
|
63 |
+
journal = {CoRR},
|
64 |
+
volume = {abs/2104.14294},
|
65 |
+
year = {2021},
|
66 |
+
url = {https://arxiv.org/abs/2104.14294},
|
67 |
+
archivePrefix = {arXiv},
|
68 |
+
eprint = {2104.14294},
|
69 |
+
timestamp = {Tue, 04 May 2021 15:12:43 +0200},
|
70 |
+
biburl = {https://dblp.org/rec/journals/corr/abs-2104-14294.bib},
|
71 |
+
bibsource = {dblp computer science bibliography, https://dblp.org}
|
72 |
+
}
|
73 |
+
```
|
config.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"ViTModel"
|
4 |
+
],
|
5 |
+
"attention_probs_dropout_prob": 0.0,
|
6 |
+
"hidden_act": "gelu",
|
7 |
+
"hidden_dropout_prob": 0.0,
|
8 |
+
"hidden_size": 768,
|
9 |
+
"image_size": 224,
|
10 |
+
"initializer_range": 0.02,
|
11 |
+
"intermediate_size": 3072,
|
12 |
+
"layer_norm_eps": 1e-12,
|
13 |
+
"model_type": "vit",
|
14 |
+
"num_attention_heads": 12,
|
15 |
+
"num_channels": 3,
|
16 |
+
"num_hidden_layers": 12,
|
17 |
+
"patch_size": 16,
|
18 |
+
"torch_dtype": "float32",
|
19 |
+
"transformers_version": "4.10.0.dev0"
|
20 |
+
}
|
preprocessor_config.json
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_normalize": true,
|
3 |
+
"do_resize": true,
|
4 |
+
"feature_extractor_type": "ViTFeatureExtractor",
|
5 |
+
"image_mean": [
|
6 |
+
0.485,
|
7 |
+
0.456,
|
8 |
+
0.406
|
9 |
+
],
|
10 |
+
"image_std": [
|
11 |
+
0.229,
|
12 |
+
0.224,
|
13 |
+
0.225
|
14 |
+
],
|
15 |
+
"resample": 2,
|
16 |
+
"size": 224
|
17 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a064e36c67289caaa5c949c0b3f7f31a0fcbcba5721f5fa12419933ec1f4fe6e
|
3 |
+
size 343268597
|
tf_model.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1765bdd93da60ef9f97f927cf10647a467f46f4149975a951ef24298ce3d6231
|
3 |
+
size 345823752
|