File size: 15,474 Bytes
fa36169
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
{
 "cells": [
  {
   "metadata": {},
   "cell_type": "markdown",
   "source": [
    "# Alfred the Mail Sorting Butler: A LangGraph Example\n",
    "\n",
    "In this notebook, **we're going to build a complete email processing workflow using LangGraph**.\n",
    "\n",
    "This notebook is part of the <a href=\"https://www.hf.co/learn/agents-course\">Hugging Face Agents Course</a>, a free course from beginner to expert, where you learn to build Agents.\n",
    "\n",
    "![Agents course share](https://huggingface.co/datasets/agents-course/course-images/resolve/main/en/communication/share.png)\n",
    "\n",
    "## What You'll Learn\n",
    "\n",
    "In this notebook, you'll learn how to:\n",
    "1. Set up a LangGraph workflow\n",
    "2. Define state and nodes for email processing\n",
    "3. Create conditional branching in a graph\n",
    "4. Connect an LLM for classification and content generation\n",
    "5. Visualize the workflow graph\n",
    "6. Execute the workflow with example data"
   ]
  },
  {
   "metadata": {},
   "cell_type": "code",
   "outputs": [],
   "execution_count": null,
   "source": [
    "# Install the required packages\n",
    "%pip install -q langgraph langchain_openai langchain_huggingface"
   ]
  },
  {
   "metadata": {},
   "cell_type": "markdown",
   "source": [
    "## Setting Up Our Environment\n",
    "\n",
    "First, let's import all the necessary libraries. LangGraph provides the graph structure, while LangChain offers convenient interfaces for working with LLMs."
   ]
  },
  {
   "metadata": {},
   "cell_type": "code",
   "outputs": [],
   "execution_count": null,
   "source": [
    "import os\n",
    "from typing import TypedDict, List, Dict, Any, Optional\n",
    "from langgraph.graph import StateGraph, END\n",
    "from langchain_openai import ChatOpenAI\n",
    "from langchain_core.messages import HumanMessage\n",
    "\n",
    "# Set your OpenAI API key here\n",
    "os.environ[\"OPENAI_API_KEY\"] = \"sk-xxxxx\"  # Replace with your actual API key\n",
    "\n",
    "# Initialize our LLM\n",
    "model = ChatOpenAI(model=\"gpt-4o\", temperature=0)"
   ]
  },
  {
   "metadata": {},
   "cell_type": "markdown",
   "source": [
    "## Step 1: Define Our State\n",
    "\n",
    "In LangGraph, **State** is the central concept. It represents all the information that flows through our workflow.\n",
    "\n",
    "For Alfred's email processing system, we need to track:\n",
    "- The email being processed\n",
    "- Whether it's spam or not\n",
    "- The draft response (for legitimate emails)\n",
    "- Conversation history with the LLM"
   ]
  },
  {
   "metadata": {},
   "cell_type": "code",
   "outputs": [],
   "execution_count": null,
   "source": [
    "class EmailState(TypedDict):\n",
    "    email: Dict[str, Any]\n",
    "    is_spam: Optional[bool]\n",
    "    spam_reason: Optional[str]\n",
    "    email_category: Optional[str]\n",
    "    email_draft: Optional[str]\n",
    "    messages: List[Dict[str, Any]]"
   ]
  },
  {
   "metadata": {},
   "cell_type": "markdown",
   "source": "## Step 2: Define Our Nodes"
  },
  {
   "metadata": {},
   "cell_type": "code",
   "outputs": [],
   "execution_count": null,
   "source": [
    "def read_email(state: EmailState):\n",
    "    email = state[\"email\"]\n",
    "    print(f\"Alfred is processing an email from {email['sender']} with subject: {email['subject']}\")\n",
    "    return {}\n",
    "\n",
    "\n",
    "def classify_email(state: EmailState):\n",
    "    email = state[\"email\"]\n",
    "\n",
    "    prompt = f\"\"\"\n",
    "As Alfred the butler of Mr wayne and it's SECRET identity Batman, analyze this email and determine if it is spam or legitimate and should be brought to Mr wayne's attention.\n",
    "\n",
    "Email:\n",
    "From: {email['sender']}\n",
    "Subject: {email['subject']}\n",
    "Body: {email['body']}\n",
    "\n",
    "First, determine if this email is spam.\n",
    "answer with SPAM or HAM if it's legitimate. Only return the answer\n",
    "Answer :\n",
    "    \"\"\"\n",
    "    messages = [HumanMessage(content=prompt)]\n",
    "    response = model.invoke(messages)\n",
    "\n",
    "    response_text = response.content.lower()\n",
    "    print(response_text)\n",
    "    is_spam = \"spam\" in response_text and \"ham\" not in response_text\n",
    "\n",
    "    if not is_spam:\n",
    "        new_messages = state.get(\"messages\", []) + [\n",
    "            {\"role\": \"user\", \"content\": prompt},\n",
    "            {\"role\": \"assistant\", \"content\": response.content}\n",
    "        ]\n",
    "    else:\n",
    "        new_messages = state.get(\"messages\", [])\n",
    "\n",
    "    return {\n",
    "        \"is_spam\": is_spam,\n",
    "        \"messages\": new_messages\n",
    "    }\n",
    "\n",
    "\n",
    "def handle_spam(state: EmailState):\n",
    "    print(f\"Alfred has marked the email as spam.\")\n",
    "    print(\"The email has been moved to the spam folder.\")\n",
    "    return {}\n",
    "\n",
    "\n",
    "def drafting_response(state: EmailState):\n",
    "    email = state[\"email\"]\n",
    "\n",
    "    prompt = f\"\"\"\n",
    "As Alfred the butler, draft a polite preliminary response to this email.\n",
    "\n",
    "Email:\n",
    "From: {email['sender']}\n",
    "Subject: {email['subject']}\n",
    "Body: {email['body']}\n",
    "\n",
    "Draft a brief, professional response that Mr. Wayne can review and personalize before sending.\n",
    "    \"\"\"\n",
    "\n",
    "    messages = [HumanMessage(content=prompt)]\n",
    "    response = model.invoke(messages)\n",
    "\n",
    "    new_messages = state.get(\"messages\", []) + [\n",
    "        {\"role\": \"user\", \"content\": prompt},\n",
    "        {\"role\": \"assistant\", \"content\": response.content}\n",
    "    ]\n",
    "\n",
    "    return {\n",
    "        \"email_draft\": response.content,\n",
    "        \"messages\": new_messages\n",
    "    }\n",
    "\n",
    "\n",
    "def notify_mr_wayne(state: EmailState):\n",
    "    email = state[\"email\"]\n",
    "\n",
    "    print(\"\\n\" + \"=\" * 50)\n",
    "    print(f\"Sir, you've received an email from {email['sender']}.\")\n",
    "    print(f\"Subject: {email['subject']}\")\n",
    "    print(\"\\nI've prepared a draft response for your review:\")\n",
    "    print(\"-\" * 50)\n",
    "    print(state[\"email_draft\"])\n",
    "    print(\"=\" * 50 + \"\\n\")\n",
    "\n",
    "    return {}\n",
    "\n",
    "\n",
    "# Define routing logic\n",
    "def route_email(state: EmailState) -> str:\n",
    "    if state[\"is_spam\"]:\n",
    "        return \"spam\"\n",
    "    else:\n",
    "        return \"legitimate\"\n",
    "\n",
    "\n",
    "# Create the graph\n",
    "email_graph = StateGraph(EmailState)\n",
    "\n",
    "# Add nodes\n",
    "email_graph.add_node(\"read_email\", read_email)  # the read_email node executes the read_mail function\n",
    "email_graph.add_node(\"classify_email\", classify_email)  # the classify_email node will execute the classify_email function\n",
    "email_graph.add_node(\"handle_spam\", handle_spam)  #same logic\n",
    "email_graph.add_node(\"drafting_response\", drafting_response)  #same logic\n",
    "email_graph.add_node(\"notify_mr_wayne\", notify_mr_wayne)  # same logic\n"
   ]
  },
  {
   "metadata": {},
   "cell_type": "markdown",
   "source": "## Step 3: Define Our Routing Logic"
  },
  {
   "metadata": {},
   "cell_type": "code",
   "outputs": [],
   "execution_count": null,
   "source": [
    "# Add edges\n",
    "email_graph.add_edge(START, \"read_email\")  # After starting we go to the \"read_email\" node\n",
    "\n",
    "email_graph.add_edge(\"read_email\", \"classify_email\")  # after_reading we classify\n",
    "\n",
    "# Add conditional edges\n",
    "email_graph.add_conditional_edges(\n",
    "    \"classify_email\",  # after classify, we run the \"route_email\" function\"\n",
    "    route_email,\n",
    "    {\n",
    "        \"spam\": \"handle_spam\",  # if it return \"Spam\", we go the \"handle_span\" node\n",
    "        \"legitimate\": \"drafting_response\"  # and if it's legitimate, we go to the \"drafting response\" node\n",
    "    }\n",
    ")\n",
    "\n",
    "# Add final edges\n",
    "email_graph.add_edge(\"handle_spam\", END)  # after handling spam we always end\n",
    "email_graph.add_edge(\"drafting_response\", \"notify_mr_wayne\")\n",
    "email_graph.add_edge(\"notify_mr_wayne\", END)  # after notifyinf Me wayne, we can end  too\n"
   ]
  },
  {
   "metadata": {},
   "cell_type": "markdown",
   "source": "## Step 4: Create the StateGraph and Define Edges"
  },
  {
   "metadata": {},
   "cell_type": "code",
   "outputs": [],
   "execution_count": null,
   "source": [
    "# Compile the graph\n",
    "compiled_graph = email_graph.compile()"
   ]
  },
  {
   "metadata": {},
   "cell_type": "code",
   "outputs": [],
   "execution_count": null,
   "source": [
    "from IPython.display import Image, display\n",
    "\n",
    "display(Image(compiled_graph.get_graph().draw_mermaid_png()))"
   ]
  },
  {
   "metadata": {},
   "cell_type": "code",
   "outputs": [],
   "execution_count": null,
   "source": [
    " # Example emails for testing\n",
    "legitimate_email = {\n",
    "    \"sender\": \"Joker\",\n",
    "    \"subject\": \"Found you Batman ! \",\n",
    "    \"body\": \"Mr. Wayne,I found your secret identity ! I know you're batman ! Ther's no denying it, I have proof of that and I'm coming to find you soon. I'll get my revenge. JOKER\"\n",
    "}\n",
    "\n",
    "spam_email = {\n",
    "    \"sender\": \"Crypto bro\",\n",
    "    \"subject\": \"The best investment of 2025\",\n",
    "    \"body\": \"Mr Wayne, I just launched an ALT coin and want you to buy some !\"\n",
    "}\n",
    "# Process legitimate email\n",
    "print(\"\\nProcessing legitimate email...\")\n",
    "legitimate_result = compiled_graph.invoke({\n",
    "    \"email\": legitimate_email,\n",
    "    \"is_spam\": None,\n",
    "    \"spam_reason\": None,\n",
    "    \"email_category\": None,\n",
    "    \"email_draft\": None,\n",
    "    \"messages\": []\n",
    "})\n",
    "\n",
    "# Process spam email\n",
    "print(\"\\nProcessing spam email...\")\n",
    "spam_result = compiled_graph.invoke({\n",
    "    \"email\": spam_email,\n",
    "    \"is_spam\": None,\n",
    "    \"spam_reason\": None,\n",
    "    \"email_category\": None,\n",
    "    \"email_draft\": None,\n",
    "    \"messages\": []\n",
    "})"
   ]
  },
  {
   "metadata": {},
   "cell_type": "markdown",
   "source": [
    "## Step 5: Inspecting Our Mail Sorting Agent with Langfuse ๐Ÿ“ก\n",
    "\n",
    "As Alfred fine-tunes the Main Sorting Agent, he's growing weary of debugging its runs. Agents, by nature, are unpredictable and difficult to inspect. But since he aims to build the ultimate Spam Detection Agent and deploy it in production, he needs robust traceability for future monitoring and analysis.\n",
    "\n",
    "To do this, Alfred can use an observability tool such as [Langfuse](https://langfuse.com/) to trace and monitor the inner steps of the agent.\n",
    "\n",
    "First, we need to install the necessary dependencies:"
   ]
  },
  {
   "metadata": {},
   "cell_type": "code",
   "outputs": [],
   "execution_count": null,
   "source": "%pip install -q langfuse"
  },
  {
   "metadata": {},
   "cell_type": "markdown",
   "source": "Next, we set the Langfuse API keys and host address as environment variables. You can get your Langfuse credentials by signing up for [Langfuse Cloud](https://cloud.langfuse.com) or [self-hosting Langfuse](https://langfuse.com/self-hosting)."
  },
  {
   "metadata": {},
   "cell_type": "code",
   "outputs": [],
   "execution_count": null,
   "source": [
    "import os\n",
    "\n",
    "# Get keys for your project from the project settings page: https://cloud.langfuse.com\n",
    "os.environ[\"LANGFUSE_PUBLIC_KEY\"] = \"pk-lf-...\"\n",
    "os.environ[\"LANGFUSE_SECRET_KEY\"] = \"sk-lf-...\"\n",
    "os.environ[\"LANGFUSE_HOST\"] = \"https://cloud.langfuse.com\"  # ๐Ÿ‡ช๐Ÿ‡บ EU region\n",
    "# os.environ[\"LANGFUSE_HOST\"] = \"https://us.cloud.langfuse.com\" # ๐Ÿ‡บ๐Ÿ‡ธ US region"
   ]
  },
  {
   "metadata": {},
   "cell_type": "markdown",
   "source": "Now, we configure the [Langfuse `callback_handler`](https://langfuse.com/docs/integrations/langchain/tracing#add-langfuse-to-your-langchain-application)."
  },
  {
   "metadata": {},
   "cell_type": "code",
   "outputs": [],
   "execution_count": null,
   "source": [
    "from langfuse.callback import CallbackHandler\n",
    "\n",
    "# Initialize Langfuse CallbackHandler for LangGraph/Langchain (tracing)\n",
    "langfuse_handler = CallbackHandler()"
   ]
  },
  {
   "metadata": {},
   "cell_type": "markdown",
   "source": "We then add `config={\"callbacks\": [langfuse_handler]}` to the invocation of the agents and run them again."
  },
  {
   "metadata": {},
   "cell_type": "code",
   "outputs": [],
   "execution_count": null,
   "source": [
    "# Process legitimate email\n",
    "print(\"\\nProcessing legitimate email...\")\n",
    "legitimate_result = compiled_graph.invoke(\n",
    "    input={\n",
    "        \"email\": legitimate_email,\n",
    "        \"is_spam\": None,\n",
    "        \"draft_response\": None,\n",
    "        \"messages\": []\n",
    "    },\n",
    "    config={\"callbacks\": [langfuse_handler]}\n",
    ")\n",
    "\n",
    "# Process spam email\n",
    "print(\"\\nProcessing spam email...\")\n",
    "spam_result = compiled_graph.invoke(\n",
    "    input={\n",
    "        \"email\": spam_email,\n",
    "        \"is_spam\": None,\n",
    "        \"draft_response\": None,\n",
    "        \"messages\": []\n",
    "    },\n",
    "    config={\"callbacks\": [langfuse_handler]}\n",
    ")"
   ]
  },
  {
   "metadata": {},
   "cell_type": "markdown",
   "source": [
    "Alfred is now connected ๐Ÿ”Œ! The runs from LangGraph are being logged in Langfuse, giving him full visibility into the agent's behavior. With this setup, he's ready to revisit previous runs and refine his Mail Sorting Agent even further.\n",
    "\n",
    "![Example trace in Langfuse](https://langfuse.com/images/cookbook/huggingface-agent-course/langgraph-trace-legit.png)\n",
    "\n",
    "_[Public link to the trace with the legit email](https://cloud.langfuse.com/project/cloramnkj0002jz088vzn1ja4/traces/f5d6d72e-20af-4357-b232-af44c3728a7b?timestamp=2025-03-17T10%3A13%3A28.413Z&observation=6997ba69-043f-4f77-9445-700a033afba1)_\n",
    "\n",
    "![Example trace in Langfuse](https://langfuse.com/images/cookbook/huggingface-agent-course/langgraph-trace-spam.png)\n",
    "\n",
    "_[Public link to the trace with the spam email](https://langfuse.com/project/cloramnkj0002jz088vzn1ja4/traces/6e498053-fee4-41fd-b1ab-d534aca15f82?timestamp=2025-03-17T10%3A13%3A30.884Z&observation=84770fc8-4276-4720-914f-bf52738d44ba)_\n"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.13.2"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}