File size: 11,142 Bytes
c187244
 
 
 
fa36169
c187244
 
 
 
 
 
 
 
 
 
 
fa36169
 
 
c187244
 
 
 
fa36169
 
c187244
 
fa36169
c187244
fa36169
 
 
 
c187244
 
fa36169
c187244
 
fa36169
c187244
 
 
 
fa36169
 
 
c187244
 
fa36169
c187244
 
fa36169
c187244
 
fa36169
c187244
 
 
 
fa36169
c187244
 
 
 
 
 
 
 
 
 
 
 
fa36169
c187244
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa36169
c187244
 
fa36169
c187244
 
 
 
fa36169
c187244
 
 
 
 
fa36169
 
c187244
 
 
fa36169
 
 
c187244
 
fa36169
c187244
 
fa36169
c187244
fa36169
c187244
 
fa36169
 
c187244
 
fa36169
c187244
fa36169
 
c187244
 
fa36169
c187244
 
fa36169
c187244
 
 
 
 
 
 
fa36169
c187244
 
 
 
 
 
 
 
 
 
 
fa36169
c187244
 
fa36169
 
 
c187244
 
 
fa36169
c187244
fa36169
c187244
fa36169
c187244
fa36169
c187244
fa36169
c187244
 
 
fa36169
c187244
 
 
 
 
 
fa36169
 
c187244
 
fa36169
c187244
fa36169
 
c187244
 
fa36169
c187244
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa36169
 
c187244
 
fa36169
c187244
 
fa36169
c187244
 
 
fa36169
 
 
c187244
 
fa36169
c187244
fa36169
 
c187244
 
 
fa36169
 
c187244
 
 
fa36169
c187244
 
 
 
 
 
 
fa36169
 
c187244
 
fa36169
c187244
 
fa36169
c187244
 
 
fa36169
 
 
c187244
 
fa36169
c187244
fa36169
 
c187244
 
 
fa36169
 
c187244
 
 
fa36169
c187244
fa36169
 
 
c187244
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
{
 "cells": [
  {
   "metadata": {},
   "cell_type": "markdown",
   "source": [
    "# Agent\n",
    "\n",
    "In this notebook, **we're going to build a simple agent using using LangGraph**.\n",
    "\n",
    "This notebook is part of the <a href=\"https://www.hf.co/learn/agents-course\">Hugging Face Agents Course</a>, a free course from beginner to expert, where you learn to build Agents.\n",
    "\n",
    "![Agents course share](https://huggingface.co/datasets/agents-course/course-images/resolve/main/en/communication/share.png)\n",
    "\n",
    "As seen in the Unit 1, an agent needs 3 steps as introduced in the ReAct architecture :\n",
    "[ReAct](https://react-lm.github.io/), a general agent architecture.\n",
    "\n",
    "* `act` - let the model call specific tools\n",
    "* `observe` - pass the tool output back to the model\n",
    "* `reason` - let the model reason about the tool output to decide what to do next (e.g., call another tool or just respond directly)\n",
    "\n",
    "\n",
    "![Agent](https://huggingface.co/datasets/agents-course/course-images/resolve/main/en/unit2/LangGraph/Agent.png)"
   ],
   "id": "89791f21c171372a"
  },
  {
   "metadata": {},
   "cell_type": "code",
   "outputs": [],
   "execution_count": null,
   "source": "%pip install -q -U langchain_openai langchain_core langgraph",
   "id": "bef6c5514bd263ce"
  },
  {
   "metadata": {},
   "cell_type": "code",
   "outputs": [],
   "execution_count": null,
   "source": [
    "import os\n",
    "\n",
    "# Please setp your own key.\n",
    "os.environ[\"OPENAI_API_KEY\"] = \"sk-xxxxxx\""
   ],
   "id": "61d0ed53b26fa5c6"
  },
  {
   "metadata": {},
   "cell_type": "code",
   "outputs": [],
   "execution_count": null,
   "source": [
    "import base64\n",
    "from langchain_core.messages import HumanMessage\n",
    "from langchain_openai import ChatOpenAI\n",
    "\n",
    "vision_llm = ChatOpenAI(model=\"gpt-4o\")\n",
    "\n",
    "\n",
    "def extract_text(img_path: str) -> str:\n",
    "    \"\"\"\n",
    "    Extract text from an image file using a multimodal model.\n",
    "\n",
    "    Args:\n",
    "        img_path: A local image file path (strings).\n",
    "\n",
    "    Returns:\n",
    "        A single string containing the concatenated text extracted from each image.\n",
    "    \"\"\"\n",
    "    all_text = \"\"\n",
    "    try:\n",
    "\n",
    "        # Read image and encode as base64\n",
    "        with open(img_path, \"rb\") as image_file:\n",
    "            image_bytes = image_file.read()\n",
    "\n",
    "        image_base64 = base64.b64encode(image_bytes).decode(\"utf-8\")\n",
    "\n",
    "        # Prepare the prompt including the base64 image data\n",
    "        message = [\n",
    "            HumanMessage(\n",
    "                content=[\n",
    "                    {\n",
    "                        \"type\": \"text\",\n",
    "                        \"text\": (\n",
    "                            \"Extract all the text from this image. \"\n",
    "                            \"Return only the extracted text, no explanations.\"\n",
    "                        ),\n",
    "                    },\n",
    "                    {\n",
    "                        \"type\": \"image_url\",\n",
    "                        \"image_url\": {\n",
    "                            \"url\": f\"data:image/png;base64,{image_base64}\"\n",
    "                        },\n",
    "                    },\n",
    "                ]\n",
    "            )\n",
    "        ]\n",
    "\n",
    "        # Call the vision-capable model\n",
    "        response = vision_llm.invoke(message)\n",
    "\n",
    "        # Append extracted text\n",
    "        all_text += response.content + \"\\n\\n\"\n",
    "\n",
    "        return all_text.strip()\n",
    "    except Exception as e:\n",
    "        # You can choose whether to raise or just return an empty string / error message\n",
    "        error_msg = f\"Error extracting text: {str(e)}\"\n",
    "        print(error_msg)\n",
    "        return \"\"\n",
    "\n",
    "\n",
    "llm = ChatOpenAI(model=\"gpt-4o\")\n",
    "\n",
    "\n",
    "def divide(a: int, b: int) -> float:\n",
    "    \"\"\"Divide a and b.\"\"\"\n",
    "    return a / b\n",
    "\n",
    "\n",
    "tools = [\n",
    "    divide,\n",
    "    extract_text\n",
    "]\n",
    "llm_with_tools = llm.bind_tools(tools, parallel_tool_calls=False)"
   ],
   "id": "a4a8bf0d5ac25a37"
  },
  {
   "metadata": {},
   "cell_type": "markdown",
   "source": "Let's create our LLM and prompt it with the overall desired agent behavior.",
   "id": "3e7c17a2e155014e"
  },
  {
   "metadata": {},
   "cell_type": "code",
   "outputs": [],
   "execution_count": null,
   "source": [
    "from typing import TypedDict, Annotated, Optional\n",
    "from langchain_core.messages import AnyMessage\n",
    "from langgraph.graph.message import add_messages\n",
    "\n",
    "\n",
    "class AgentState(TypedDict):\n",
    "    # The input document\n",
    "    input_file: Optional[str]  # Contains file path, type (PNG)\n",
    "    messages: Annotated[list[AnyMessage], add_messages]"
   ],
   "id": "f31250bc1f61da81"
  },
  {
   "metadata": {},
   "cell_type": "code",
   "outputs": [],
   "execution_count": null,
   "source": [
    "from langchain_core.messages import HumanMessage, SystemMessage\n",
    "from langchain_core.utils.function_calling import convert_to_openai_tool\n",
    "\n",
    "\n",
    "def assistant(state: AgentState):\n",
    "    # System message\n",
    "    textual_description_of_tool = \"\"\"\n",
    "extract_text(img_path: str) -> str:\n",
    "    Extract text from an image file using a multimodal model.\n",
    "\n",
    "    Args:\n",
    "        img_path: A local image file path (strings).\n",
    "\n",
    "    Returns:\n",
    "        A single string containing the concatenated text extracted from each image.\n",
    "divide(a: int, b: int) -> float:\n",
    "    Divide a and b\n",
    "\"\"\"\n",
    "    image = state[\"input_file\"]\n",
    "    sys_msg = SystemMessage(content=f\"You are an helpful agent that can analyse some images and run some computatio without provided tools :\\n{textual_description_of_tool} \\n You have access to some otpional images. Currently the loaded images is : {image}\")\n",
    "\n",
    "    return {\"messages\": [llm_with_tools.invoke([sys_msg] + state[\"messages\"])], \"input_file\": state[\"input_file\"]}"
   ],
   "id": "3c4a736f9e55afa9"
  },
  {
   "metadata": {},
   "cell_type": "markdown",
   "source": [
    "We define a `tools` node with our list of tools.\n",
    "\n",
    "The `assistant` node is just our model with bound tools.\n",
    "\n",
    "We create a graph with `assistant` and `tools` nodes.\n",
    "\n",
    "We add `tools_condition` edge, which routes to `End` or to `tools` based on  whether the `assistant` calls a tool.\n",
    "\n",
    "Now, we add one new step:\n",
    "\n",
    "We connect the `tools` node *back* to the `assistant`, forming a loop.\n",
    "\n",
    "* After the `assistant` node executes, `tools_condition` checks if the model's output is a tool call.\n",
    "* If it is a tool call, the flow is directed to the `tools` node.\n",
    "* The `tools` node connects back to `assistant`.\n",
    "* This loop continues as long as the model decides to call tools.\n",
    "* If the model response is not a tool call, the flow is directed to END, terminating the process."
   ],
   "id": "6f1efedd943d8b1d"
  },
  {
   "metadata": {},
   "cell_type": "code",
   "outputs": [],
   "execution_count": null,
   "source": [
    "from langgraph.graph import START, StateGraph\n",
    "from langgraph.prebuilt import ToolNode, tools_condition\n",
    "from IPython.display import Image, display\n",
    "\n",
    "# Graph\n",
    "builder = StateGraph(AgentState)\n",
    "\n",
    "# Define nodes: these do the work\n",
    "builder.add_node(\"assistant\", assistant)\n",
    "builder.add_node(\"tools\", ToolNode(tools))\n",
    "\n",
    "# Define edges: these determine how the control flow moves\n",
    "builder.add_edge(START, \"assistant\")\n",
    "builder.add_conditional_edges(\n",
    "    \"assistant\",\n",
    "    # If the latest message (result) from assistant is a tool call -> tools_condition routes to tools\n",
    "    # If the latest message (result) from assistant is a not a tool call -> tools_condition routes to END\n",
    "    tools_condition,\n",
    ")\n",
    "builder.add_edge(\"tools\", \"assistant\")\n",
    "react_graph = builder.compile()\n",
    "\n",
    "# Show\n",
    "display(Image(react_graph.get_graph(xray=True).draw_mermaid_png()))"
   ],
   "id": "e013061de784638a"
  },
  {
   "metadata": {},
   "cell_type": "code",
   "outputs": [],
   "execution_count": null,
   "source": [
    "messages = [HumanMessage(content=\"Divide 6790 by 5\")]\n",
    "\n",
    "messages = react_graph.invoke({\"messages\": messages, \"input_file\": None})"
   ],
   "id": "d3b0ba5be1a54aad"
  },
  {
   "metadata": {},
   "cell_type": "code",
   "outputs": [],
   "execution_count": null,
   "source": [
    "for m in messages['messages']:\n",
    "    m.pretty_print()"
   ],
   "id": "55eb0f1afd096731"
  },
  {
   "metadata": {},
   "cell_type": "markdown",
   "source": [
    "## Training program\n",
    "MR Wayne left a note with his training program for the week. I came up with a recipe for dinner leaft in a note.\n",
    "\n",
    "you can find the document [HERE](https://huggingface.co/datasets/agents-course/course-images/blob/main/en/unit2/LangGraph/Batman_training_and_meals.png), so download it and upload it in the local folder.\n",
    "\n",
    "![Training](https://huggingface.co/datasets/agents-course/course-images/resolve/main/en/unit2/LangGraph/Batman_training_and_meals.png)"
   ],
   "id": "e0062c1b99cb4779"
  },
  {
   "metadata": {},
   "cell_type": "code",
   "outputs": [],
   "execution_count": null,
   "source": [
    "messages = [HumanMessage(content=\"According the note provided by MR wayne in the provided images. What's the list of items I should buy for the dinner menu ?\")]\n",
    "\n",
    "messages = react_graph.invoke({\"messages\": messages, \"input_file\": \"Batman_training_and_meals.png\"})"
   ],
   "id": "2e166ebba82cfd2a"
  },
  {
   "metadata": {},
   "cell_type": "code",
   "outputs": [],
   "execution_count": null,
   "source": [
    "for m in messages['messages']:\n",
    "    m.pretty_print()"
   ],
   "id": "5bfd67af70b7dcf3"
  },
  {
   "metadata": {},
   "cell_type": "code",
   "outputs": [],
   "execution_count": null,
   "source": "",
   "id": "8cd664ab5ee5450e"
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.5"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}