|
--- |
|
base_model: appvoid/no-prompt-1.3b |
|
datasets: |
|
- appvoid/no-prompt-15k |
|
inference: false |
|
language: |
|
- en |
|
license: apache-2.0 |
|
model_creator: appvoid |
|
model_name: no-prompt-1.3b |
|
pipeline_tag: text-generation |
|
quantized_by: afrideva |
|
tags: |
|
- gguf |
|
- ggml |
|
- quantized |
|
- q2_k |
|
- q3_k_m |
|
- q4_k_m |
|
- q5_k_m |
|
- q6_k |
|
- q8_0 |
|
--- |
|
# appvoid/no-prompt-1.3b-GGUF |
|
|
|
Quantized GGUF model files for [no-prompt-1.3b](https://huggingface.co/appvoid/no-prompt-1.3b) from [appvoid](https://huggingface.co/appvoid) |
|
|
|
|
|
| Name | Quant method | Size | |
|
| ---- | ---- | ---- | |
|
| [no-prompt-1.3b.fp16.gguf](https://huggingface.co/afrideva/no-prompt-1.3b-GGUF/resolve/main/no-prompt-1.3b.fp16.gguf) | fp16 | 2.69 GB | |
|
| [no-prompt-1.3b.q2_k.gguf](https://huggingface.co/afrideva/no-prompt-1.3b-GGUF/resolve/main/no-prompt-1.3b.q2_k.gguf) | q2_k | 631.52 MB | |
|
| [no-prompt-1.3b.q3_k_m.gguf](https://huggingface.co/afrideva/no-prompt-1.3b-GGUF/resolve/main/no-prompt-1.3b.q3_k_m.gguf) | q3_k_m | 704.72 MB | |
|
| [no-prompt-1.3b.q4_k_m.gguf](https://huggingface.co/afrideva/no-prompt-1.3b-GGUF/resolve/main/no-prompt-1.3b.q4_k_m.gguf) | q4_k_m | 873.27 MB | |
|
| [no-prompt-1.3b.q5_k_m.gguf](https://huggingface.co/afrideva/no-prompt-1.3b-GGUF/resolve/main/no-prompt-1.3b.q5_k_m.gguf) | q5_k_m | 1.00 GB | |
|
| [no-prompt-1.3b.q6_k.gguf](https://huggingface.co/afrideva/no-prompt-1.3b-GGUF/resolve/main/no-prompt-1.3b.q6_k.gguf) | q6_k | 1.17 GB | |
|
| [no-prompt-1.3b.q8_0.gguf](https://huggingface.co/afrideva/no-prompt-1.3b-GGUF/resolve/main/no-prompt-1.3b.q8_0.gguf) | q8_0 | 1.43 GB | |
|
|
|
|
|
|
|
## Original Model Card: |
|
![palmer](https://huggingface.co/appvoid/no-prompt-1.3b/resolve/main/_ccd1a5dd-2ddc-4d5a-8163-fd6d1b39f5f4.jpeg?download=true) |
|
# no-prompt |
|
### a sheared-llama-1.3b fine-tuning |
|
This model uses an 1.3 billion parameters model as base to be further fine-tuned on the same data as palmer. It works pretty good and even surpasses sota model on `hellaswag`. |
|
|
|
### evaluation |
|
|Model| ARC_C| HellaSwag| PIQA| Winogrande| |
|
|------|-----|-----------|------|-------------| |
|
|tinyllama-2t| 0.2807| 0.5463| 0.7067| 0.5683| |
|
|palmer-001 | 0.2807| 0.5524| 0.7106| 0.5896| |
|
|sheared-1.3b| 0.2910| 0.5935| 0.7339| 0.5809| |
|
|no-prompt-1.3b| 0.3157| **0.6022**| 0.7334| 0.5864| |
|
|falcon-rw-1b-instruct-openorca (sota) | **0.3362**| 0.5997| **0.7394**| **0.6148**| |
|
|
|
This model was trained on less than 25% of the dataset yet achieves competitive performance to current sota on open llm leaderboard. |
|
|
|
### training |
|
Training took ~5 P100 gpu hours. It was trained on 15,000 gpt-4 shuffled samples. no-prompt was fine-tuned using lower learning rates ensuring it keeps as much general knowledge as possible. |
|
|
|
### prompt |
|
``` |
|
no prompt |
|
``` |
|
|
|
### limitations |
|
Hallucinations are frequent, just as any transformer model this size. |
|
|
|
<a href="https://ko-fi.com/appvoid" target="_blank"><img src="https://cdn.buymeacoffee.com/buttons/v2/default-yellow.png" alt="Buy Me A Coffee" style="height: 48px !important;width: 180px !important; filter: invert(70%);" ></a> |