afrideva commited on
Commit
66c0b2b
1 Parent(s): cac3da5

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +23 -8
README.md CHANGED
@@ -28,16 +28,31 @@ Quantized GGUF model files for [TinyMistral-248M](https://huggingface.co/Locutus
28
 
29
  | Name | Quant method | Size |
30
  | ---- | ---- | ---- |
31
- | [tinymistral-248m.q2_k.gguf](https://huggingface.co/afrideva/TinyMistral-248M-GGUF/resolve/main/tinymistral-248m.q2_k.gguf) | q2_k | 115.26 MB |
32
- | [tinymistral-248m.q3_k_m.gguf](https://huggingface.co/afrideva/TinyMistral-248M-GGUF/resolve/main/tinymistral-248m.q3_k_m.gguf) | q3_k_m | 130.08 MB |
33
- | [tinymistral-248m.q4_k_m.gguf](https://huggingface.co/afrideva/TinyMistral-248M-GGUF/resolve/main/tinymistral-248m.q4_k_m.gguf) | q4_k_m | 155.67 MB |
34
- | [tinymistral-248m.q5_k_m.gguf](https://huggingface.co/afrideva/TinyMistral-248M-GGUF/resolve/main/tinymistral-248m.q5_k_m.gguf) | q5_k_m | 179.23 MB |
35
- | [tinymistral-248m.q6_k.gguf](https://huggingface.co/afrideva/TinyMistral-248M-GGUF/resolve/main/tinymistral-248m.q6_k.gguf) | q6_k | 204.26 MB |
36
- | [tinymistral-248m.q8_0.gguf](https://huggingface.co/afrideva/TinyMistral-248M-GGUF/resolve/main/tinymistral-248m.q8_0.gguf) | q8_0 | 264.32 MB |
 
37
 
38
 
39
 
40
  ## Original Model Card:
41
- A pre-trained language model, based on the Mistral 7B model, has been scaled down to approximately 248 million parameters. Currently, it's been trained on 250,000 examples over 125,000 steps within the first epoch. The batch size is ramped up from 2 to 16 for future epochs. This model isn't intended for direct use but for fine-tuning on a downstream task.
 
42
 
43
- During evaluation on InstructMix, this model achieved an average perplexity score of 6.3. More training sessions are planned for this model.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28
 
29
  | Name | Quant method | Size |
30
  | ---- | ---- | ---- |
31
+ | [tinymistral-248m.fp16.gguf](https://huggingface.co/afrideva/TinyMistral-248M-GGUF/resolve/main/tinymistral-248m.fp16.gguf) | fp16 | None |
32
+ | [tinymistral-248m.q2_k.gguf](https://huggingface.co/afrideva/TinyMistral-248M-GGUF/resolve/main/tinymistral-248m.q2_k.gguf) | q2_k | None |
33
+ | [tinymistral-248m.q3_k_m.gguf](https://huggingface.co/afrideva/TinyMistral-248M-GGUF/resolve/main/tinymistral-248m.q3_k_m.gguf) | q3_k_m | None |
34
+ | [tinymistral-248m.q4_k_m.gguf](https://huggingface.co/afrideva/TinyMistral-248M-GGUF/resolve/main/tinymistral-248m.q4_k_m.gguf) | q4_k_m | None |
35
+ | [tinymistral-248m.q5_k_m.gguf](https://huggingface.co/afrideva/TinyMistral-248M-GGUF/resolve/main/tinymistral-248m.q5_k_m.gguf) | q5_k_m | None |
36
+ | [tinymistral-248m.q6_k.gguf](https://huggingface.co/afrideva/TinyMistral-248M-GGUF/resolve/main/tinymistral-248m.q6_k.gguf) | q6_k | None |
37
+ | [tinymistral-248m.q8_0.gguf](https://huggingface.co/afrideva/TinyMistral-248M-GGUF/resolve/main/tinymistral-248m.q8_0.gguf) | q8_0 | None |
38
 
39
 
40
 
41
  ## Original Model Card:
42
+ A pre-trained language model, based on the Mistral 7B model, has been scaled down to approximately 248 million parameters. Currently, this model has been trained on 2,120,000 examples. The batch size will remain low for future epochs. This model isn't intended for direct use but for fine-tuning on a downstream task.
43
+ This model should have a context length of around 32,768 tokens.
44
 
45
+ During evaluation on InstructMix, this model achieved an average perplexity score of 6.3. More training sessions are planned for this model.
46
+ # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
47
+ Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Locutusque__TinyMistral-248m)
48
+
49
+ | Metric | Value |
50
+ |-----------------------|---------------------------|
51
+ | Avg. | 24.18 |
52
+ | ARC (25-shot) | 20.82 |
53
+ | HellaSwag (10-shot) | 26.98 |
54
+ | MMLU (5-shot) | 23.11 |
55
+ | TruthfulQA (0-shot) | 46.89 |
56
+ | Winogrande (5-shot) | 50.75 |
57
+ | GSM8K (5-shot) | 0.0 |
58
+ | DROP (3-shot) | 0.74 |