afrideva commited on
Commit
cac3da5
1 Parent(s): b8e0fec

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +43 -0
README.md ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Locutusque/TinyMistral-248M
3
+ datasets:
4
+ - Skylion007/openwebtext
5
+ inference: false
6
+ language:
7
+ - en
8
+ license: apache-2.0
9
+ model_creator: Locutusque
10
+ model_name: TinyMistral-248M
11
+ pipeline_tag: text-generation
12
+ quantized_by: afrideva
13
+ tags:
14
+ - gguf
15
+ - ggml
16
+ - quantized
17
+ - q2_k
18
+ - q3_k_m
19
+ - q4_k_m
20
+ - q5_k_m
21
+ - q6_k
22
+ - q8_0
23
+ ---
24
+ # Locutusque/TinyMistral-248M-GGUF
25
+
26
+ Quantized GGUF model files for [TinyMistral-248M](https://huggingface.co/Locutusque/TinyMistral-248M) from [Locutusque](https://huggingface.co/Locutusque)
27
+
28
+
29
+ | Name | Quant method | Size |
30
+ | ---- | ---- | ---- |
31
+ | [tinymistral-248m.q2_k.gguf](https://huggingface.co/afrideva/TinyMistral-248M-GGUF/resolve/main/tinymistral-248m.q2_k.gguf) | q2_k | 115.26 MB |
32
+ | [tinymistral-248m.q3_k_m.gguf](https://huggingface.co/afrideva/TinyMistral-248M-GGUF/resolve/main/tinymistral-248m.q3_k_m.gguf) | q3_k_m | 130.08 MB |
33
+ | [tinymistral-248m.q4_k_m.gguf](https://huggingface.co/afrideva/TinyMistral-248M-GGUF/resolve/main/tinymistral-248m.q4_k_m.gguf) | q4_k_m | 155.67 MB |
34
+ | [tinymistral-248m.q5_k_m.gguf](https://huggingface.co/afrideva/TinyMistral-248M-GGUF/resolve/main/tinymistral-248m.q5_k_m.gguf) | q5_k_m | 179.23 MB |
35
+ | [tinymistral-248m.q6_k.gguf](https://huggingface.co/afrideva/TinyMistral-248M-GGUF/resolve/main/tinymistral-248m.q6_k.gguf) | q6_k | 204.26 MB |
36
+ | [tinymistral-248m.q8_0.gguf](https://huggingface.co/afrideva/TinyMistral-248M-GGUF/resolve/main/tinymistral-248m.q8_0.gguf) | q8_0 | 264.32 MB |
37
+
38
+
39
+
40
+ ## Original Model Card:
41
+ A pre-trained language model, based on the Mistral 7B model, has been scaled down to approximately 248 million parameters. Currently, it's been trained on 250,000 examples over 125,000 steps within the first epoch. The batch size is ramped up from 2 to 16 for future epochs. This model isn't intended for direct use but for fine-tuning on a downstream task.
42
+
43
+ During evaluation on InstructMix, this model achieved an average perplexity score of 6.3. More training sessions are planned for this model.