File size: 3,340 Bytes
85ef7f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
---
base_model: codellama/CodeLlama-34b-Python-hf
library_name: peft
license: llama2
tags:
- axolotl
- generated_from_trainer
model-index:
- name: CodeLlamaL4
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
base_model: codellama/CodeLlama-34b-Python-hf
model_type: LlamaForCausalLM
tokenizer_type: CodeLlamaTokenizer
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: afrias5/FinUpTagsNoTestNoExNew
type: alpaca
field: text
dataset_prepared_path: FinUpTagsNoTestNoExNewCodeLlama
val_set_size: 0
output_dir: models/codellama34bTestL4
# lora_model_dir: models/codellamaTestLora4
# auto_resume_from_checkpoints: true
sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true
eval_sample_packing: False
adapter: lora
lora_r: 4
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_modules_to_save:
- embed_tokens
- lm_head
wandb_project: 'codellamaFeed'
wandb_entity:
wandb_watch:
wandb_run_id:
wandb_name: '34bLora4'
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 1
num_epochs: 4
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: true
fp16:
tf32: false
hub_model_id: afrias5/CodeLlamaL4
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: false
s2_attention:
logging_steps: 1
warmup_steps: 10
# eval_steps: 300
saves_per_epoch: 1
save_total_limit: 12
debug:
deepspeed:
weight_decay: 0.0
fsdp:
deepspeed: deepspeed_configs/zero3_bf16.json
fsdp_config:
special_tokens:
bos_token: "<s>"
eos_token: "</s>"
unk_token: "<unk>"
```
</details><br>
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/afrias5/codellamaFeed/runs/qazhmiqa)
# CodeLlamaL4
This model is a fine-tuned version of [codellama/CodeLlama-34b-Python-hf](https://huggingface.co/codellama/CodeLlama-34b-Python-hf) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- total_eval_batch_size: 2
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 4
### Training results
### Framework versions
- PEFT 0.11.1
- Transformers 4.42.4
- Pytorch 2.2.2+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1 |