afrias5 commited on
Commit
674af60
1 Parent(s): 7d90a90

End of training

Browse files
Files changed (1) hide show
  1. README.md +147 -0
README.md ADDED
@@ -0,0 +1,147 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: meta-llama/CodeLlama-70b-Python-hf
3
+ library_name: peft
4
+ license: llama2
5
+ tags:
6
+ - axolotl
7
+ - generated_from_trainer
8
+ model-index:
9
+ - name: Acodellama70b
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
17
+ <details><summary>See axolotl config</summary>
18
+
19
+ axolotl version: `0.4.1`
20
+ ```yaml
21
+ base_model: meta-llama/CodeLlama-70b-Python-hf
22
+ model_type: LlamaForCausalLM
23
+ tokenizer_type: AutoTokenizer
24
+
25
+ load_in_8bit: false
26
+ load_in_4bit: true
27
+ strict: false
28
+
29
+ datasets:
30
+ - path: afrias5/FinUpTagsNoTestNoExNew
31
+ type: alpaca
32
+ field: text
33
+
34
+ dataset_prepared_path: AFinUpTagsNoTestNoExNewCodeLlama
35
+ val_set_size: 0
36
+ output_dir: models/Acodellama70bL4
37
+ # lora_model_dir: models/codellamaTest1/checkpoint-80
38
+ # auto_resume_from_checkpoints: true
39
+ sequence_len: 4096
40
+ sample_packing: true
41
+ pad_to_sequence_len: true
42
+ eval_sample_packing: False
43
+ adapter: lora
44
+ lora_r: 4
45
+ lora_alpha: 16
46
+ lora_dropout: 0.05
47
+ lora_target_linear: true
48
+ lora_fan_in_fan_out:
49
+ lora_modules_to_save:
50
+ - embed_tokens
51
+ - lm_head
52
+
53
+ wandb_project: 'codellamaFeed'
54
+ wandb_entity:
55
+ wandb_watch:
56
+ wandb_run_id:
57
+ wandb_name: 'A70bL4'
58
+ wandb_log_model:
59
+
60
+ gradient_accumulation_steps: 4
61
+ micro_batch_size: 1
62
+ num_epochs: 4
63
+ optimizer: adamw_torch
64
+ lr_scheduler: cosine
65
+ learning_rate: 0.0002
66
+
67
+ train_on_inputs: false
68
+ group_by_length: false
69
+ bf16: true
70
+ fp16:
71
+ tf32: false
72
+ hub_model_id: afrias5/Acodellama70b
73
+ gradient_checkpointing: true
74
+ early_stopping_patience:
75
+ resume_from_checkpoint:
76
+ local_rank:
77
+ logging_steps: 1
78
+ xformers_attention:
79
+ flash_attention: false
80
+ s2_attention:
81
+ logging_steps: 1
82
+ warmup_steps: 10
83
+ # eval_steps: 300
84
+ saves_per_epoch: 1
85
+ save_total_limit: 12
86
+ debug:
87
+ deepspeed:
88
+ weight_decay: 0.0
89
+ fsdp:
90
+ deepspeed: deepspeed_configs/zero3_bf16.json
91
+ fsdp_config:
92
+ special_tokens:
93
+ bos_token: "<s>"
94
+ eos_token: "</s>"
95
+ unk_token: "<unk>"
96
+
97
+ ```
98
+
99
+ </details><br>
100
+
101
+ [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/afrias5/codellamaFeed/runs/pb22442t)
102
+ # Acodellama70b
103
+
104
+ This model is a fine-tuned version of [meta-llama/CodeLlama-70b-Python-hf](https://huggingface.co/meta-llama/CodeLlama-70b-Python-hf) on the None dataset.
105
+
106
+ ## Model description
107
+
108
+ More information needed
109
+
110
+ ## Intended uses & limitations
111
+
112
+ More information needed
113
+
114
+ ## Training and evaluation data
115
+
116
+ More information needed
117
+
118
+ ## Training procedure
119
+
120
+ ### Training hyperparameters
121
+
122
+ The following hyperparameters were used during training:
123
+ - learning_rate: 0.0002
124
+ - train_batch_size: 1
125
+ - eval_batch_size: 1
126
+ - seed: 42
127
+ - distributed_type: multi-GPU
128
+ - num_devices: 2
129
+ - gradient_accumulation_steps: 4
130
+ - total_train_batch_size: 8
131
+ - total_eval_batch_size: 2
132
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
133
+ - lr_scheduler_type: cosine
134
+ - lr_scheduler_warmup_steps: 10
135
+ - num_epochs: 4
136
+
137
+ ### Training results
138
+
139
+
140
+
141
+ ### Framework versions
142
+
143
+ - PEFT 0.11.1
144
+ - Transformers 4.42.4
145
+ - Pytorch 2.2.2+cu121
146
+ - Datasets 2.19.1
147
+ - Tokenizers 0.19.1