finetuned-arsenic / README.md
afraid15chicken's picture
Model save
32306ee verified
|
raw
history blame
3.05 kB
---
library_name: transformers
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: finetuned-arsenic
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9993451211525868
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned-arsenic
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0026
- Accuracy: 0.9993
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| 0.2214 | 0.1848 | 100 | 0.2314 | 0.9247 |
| 0.2189 | 0.3697 | 200 | 0.1578 | 0.9404 |
| 0.2104 | 0.5545 | 300 | 0.1063 | 0.9673 |
| 0.2138 | 0.7394 | 400 | 0.0998 | 0.9718 |
| 0.2149 | 0.9242 | 500 | 0.0644 | 0.9790 |
| 0.1439 | 1.1091 | 600 | 0.0757 | 0.9646 |
| 0.1038 | 1.2939 | 700 | 0.1316 | 0.9574 |
| 0.0458 | 1.4787 | 800 | 0.0282 | 0.9902 |
| 0.0078 | 1.6636 | 900 | 0.1226 | 0.9718 |
| 0.0286 | 1.8484 | 1000 | 0.0584 | 0.9856 |
| 0.0493 | 2.0333 | 1100 | 0.1419 | 0.9633 |
| 0.0028 | 2.2181 | 1200 | 0.0232 | 0.9948 |
| 0.0292 | 2.4030 | 1300 | 0.0171 | 0.9935 |
| 0.0402 | 2.5878 | 1400 | 0.0061 | 0.9987 |
| 0.043 | 2.7726 | 1500 | 0.0497 | 0.9889 |
| 0.0224 | 2.9575 | 1600 | 0.0062 | 0.9987 |
| 0.0021 | 3.1423 | 1700 | 0.0092 | 0.9974 |
| 0.0025 | 3.3272 | 1800 | 0.0041 | 0.9987 |
| 0.0018 | 3.5120 | 1900 | 0.0054 | 0.9974 |
| 0.0034 | 3.6969 | 2000 | 0.0052 | 0.9980 |
| 0.0072 | 3.8817 | 2100 | 0.0026 | 0.9993 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.19.1