File size: 1,548 Bytes
7749d32 f98e11c 7749d32 063e016 7749d32 0d05462 7749d32 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
---
license: apache-2.0
pipeline_tag: text-classification
tags:
- sentiment
language:
- it
---
# Sentiment at aequa-tech
## Model Description
- **Developed by:** [aequa-tech](https://aequa-tech.com/)
- **Funded by:** [NGI-Search](https://www.ngi.eu/ngi-projects/ngi-search/)
- **Language(s) (NLP):** Italian
- **License:** apache-2.0
- **Finetuned from model:** [AlBERTo](https://huggingface.co/m-polignano-uniba/bert_uncased_L-12_H-768_A-12_italian_alberto)
This model is a fine-tuned version of [AlBERTo](https://huggingface.co/m-polignano-uniba/bert_uncased_L-12_H-768_A-12_italian_alberto) Italian model on **sentiment analysis**
# Training Details
## Training Data
- SENTIPOLC [2014](https://live.european-language-grid.eu/catalogue/corpus/7480)/[2016](https://live.european-language-grid.eu/catalogue/corpus/7479)
## Training Hyperparameters
- learning_rate: 2e-5
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam
# Evaluation
## Testing Data
It was tested on SENTIPOLC 2016 test set
# Framework versions
- Transformers 4.30.2
- Pytorch 2.1.2
- Datasets 2.19.0
- Accelerate 0.30.0
# How to use this model:
```Python
model = AutoModelForSequenceClassification.from_pretrained('aequa-tech/sentiment-it',num_labels=3, ignore_mismatched_sizes=True)
tokenizer = AutoTokenizer.from_pretrained("m-polignano-uniba/bert_uncased_L-12_H-768_A-12_italian_alb3rt0")
classifier = pipeline("text-classification", model=model, tokenizer=tokenizer, top_k=None)
classifier("L'insostenibile leggerezza dell'essere")
```
|