|
import os |
|
|
|
import lmdb |
|
import pandas as pd |
|
import torch |
|
from torch.utils.data import Dataset |
|
from torchvision.io import decode_image, read_image |
|
|
|
|
|
VIEW_ORDER = ['LPO', 'RAO', 'LAO', 'SWIMMERS', 'XTABLE LATERAL', 'LL', 'LATERAL', 'AP AXIAL', 'AP RLD', 'AP LLD', 'AP', 'PA RLD', 'PA LLD', 'PA'] |
|
|
|
|
|
def mimic_cxr_image_path(dir, subject_id, study_id, dicom_id, ext='dcm'): |
|
return os.path.join(dir, 'p' + str(subject_id)[:2], 'p' + str(subject_id), |
|
's' + str(study_id), str(dicom_id) + '.' + ext) |
|
|
|
|
|
class StudyIDEDStayIDSubset(Dataset): |
|
""" |
|
Study ID & ED stay ID subset. Examples are indexed by the study identifier. |
|
Information from the ED module is added by finding the study_id that is within |
|
the timespan of the stay_id for the subject_id. The history and indication |
|
sections are also included. |
|
""" |
|
def __init__( |
|
self, |
|
split, |
|
records, |
|
mimic_cxr_jpg_lmdb_path=None, |
|
mimic_cxr_dir=None, |
|
max_images_per_study=None, |
|
transforms=None, |
|
images=True, |
|
columns='study_id, dicom_id, subject_id, findings, impression', |
|
and_condition='', |
|
study_id_inclusion_list=None, |
|
return_images=True, |
|
ed_module=True, |
|
extension='jpg', |
|
): |
|
""" |
|
Argument/s: |
|
split - 'train', 'validate', or 'test'. |
|
records - MIMIC-CXR & MIMIC-IV-ED records class instance. |
|
mimic_cxr_jpg_lmdb_path - JPG database for MIMIC-CXR-JPG. |
|
mimic_cxr_dir - Path to the MIMIC-CXR directory containing the patient study subdirectories with the JPG or DCM images. |
|
max_images_per_study - the maximum number of images per study. |
|
transforms - torchvision transformations. |
|
colour_space - PIL target colour space. |
|
images - flag to return processed images. |
|
columns - which columns to query on. |
|
and_condition - AND condition to add to the SQL query. |
|
study_id_inclusion_list - studies not in this list are excluded. |
|
return_images - return CXR images for the study as tensors. |
|
ed_module - use the ED module. |
|
extension - 'jpg' or 'dcm'. |
|
""" |
|
super(StudyIDEDStayIDSubset, self).__init__() |
|
self.split = split |
|
self.mimic_cxr_jpg_lmdb_path = mimic_cxr_jpg_lmdb_path |
|
self.mimic_cxr_dir = mimic_cxr_dir |
|
self.records = records |
|
self.max_images_per_study = max_images_per_study |
|
self.transforms = transforms |
|
self.images = images |
|
self.columns = columns |
|
self.and_condition = and_condition |
|
self.return_images = return_images |
|
self.ed_module = ed_module |
|
self.extension = extension |
|
|
|
|
|
self.max_images_per_study = float('inf') if self.max_images_per_study is None else self.max_images_per_study |
|
|
|
assert self.extension == 'jpg' or self.extension == 'dcm', '"extension" can only be either "jpg" or "dcm".' |
|
assert (mimic_cxr_jpg_lmdb_path is None) != (mimic_cxr_dir is None), 'Either "mimic_cxr_jpg_lmdb_path" or "mimic_cxr_dir" can be set.' |
|
|
|
if self.mimic_cxr_dir is not None and self.mimic_cxr_jpg_lmdb_path is None: |
|
if self.extension == 'jpg': |
|
if 'physionet.org/files/mimic-cxr-jpg/2.0.0/files' not in self.mimic_cxr_dir: |
|
self.mimic_cxr_dir = os.path.join(self.mimic_cxr_dir, 'physionet.org/files/mimic-cxr-jpg/2.0.0/files') |
|
elif self.extension == 'dcm': |
|
if 'physionet.org/files/mimic-cxr/2.0.0/files' not in self.mimic_cxr_dir: |
|
self.mimic_cxr_dir = os.path.join(self.mimic_cxr_dir, 'physionet.org/files/mimic-cxr/2.0.0/files') |
|
|
|
query = f""" |
|
SELECT {columns} |
|
FROM mimic_cxr |
|
WHERE split = '{split}' |
|
{and_condition} |
|
ORDER BY study_id |
|
""" |
|
|
|
|
|
df = self.records.connect.sql(query).df() |
|
|
|
|
|
df = df.dropna(subset=['findings', 'impression'], how='any') |
|
|
|
|
|
if self.ed_module: |
|
df = df[df['study_id'] != 59128861] |
|
|
|
|
|
if study_id_inclusion_list is not None: |
|
df = df[df['study_id'].isin(study_id_inclusion_list)] |
|
|
|
|
|
self.examples = df['study_id'].unique().tolist() |
|
|
|
|
|
self.num_study_ids = len(self.examples) |
|
self.num_dicom_ids = len(df['dicom_id'].unique().tolist()) |
|
self.num_subject_ids = len(df['subject_id'].unique().tolist()) |
|
|
|
|
|
if self.mimic_cxr_jpg_lmdb_path is not None: |
|
|
|
print('Loading images using LMDB.') |
|
|
|
|
|
map_size = int(0.65 * (1024 ** 4)) |
|
assert isinstance(map_size, int) |
|
|
|
self.env = lmdb.open(self.mimic_cxr_jpg_lmdb_path, map_size=map_size, lock=False, readonly=True) |
|
self.txn = self.env.begin(write=False) |
|
|
|
def __len__(self): |
|
return self.num_study_ids |
|
|
|
def __getitem__(self, index): |
|
|
|
study_id = self.examples[index] |
|
|
|
|
|
study = self.records.connect.sql( |
|
f""" |
|
SELECT dicom_id, study_id, subject_id, study_datetime, ViewPosition |
|
FROM mimic_cxr |
|
WHERE (study_id = {study_id}); |
|
""" |
|
).df() |
|
subject_id = study.iloc[0, study.columns.get_loc('subject_id')] |
|
study_id = study.iloc[0, study.columns.get_loc('study_id')] |
|
study_datetime = study['study_datetime'].max() |
|
|
|
example_dict = { |
|
'study_ids': study_id, |
|
'subject_id': subject_id, |
|
'index': index, |
|
} |
|
|
|
example_dict.update(self.records.return_mimic_cxr_features(study_id)) |
|
|
|
if self.ed_module: |
|
edstays = self.records.connect.sql( |
|
f""" |
|
SELECT stay_id, intime, outtime |
|
FROM edstays |
|
WHERE (subject_id = {subject_id}) |
|
AND intime < '{study_datetime}' |
|
AND outtime > '{study_datetime}'; |
|
""" |
|
).df() |
|
|
|
assert len(edstays) <= 1 |
|
stay_id = edstays.iloc[0, edstays.columns.get_loc('stay_id')] if not edstays.empty else None |
|
self.records.clear_start_end_times() |
|
example_dict.update(self.records.return_ed_module_features(stay_id, study_datetime)) |
|
|
|
example_dict['stay_ids'] = stay_id |
|
|
|
if self.return_images: |
|
example_dict['images'], example_dict['image_time_deltas'] = self.get_images(study, study_datetime) |
|
|
|
return example_dict |
|
|
|
def get_images(self, example, reference_time): |
|
""" |
|
Get the image/s for a given example. |
|
|
|
Argument/s: |
|
example - dataframe for the example. |
|
reference_time - reference_time for time delta. |
|
|
|
Returns: |
|
The image/s for the example |
|
""" |
|
|
|
|
|
if len(example) > self.max_images_per_study: |
|
assert self.split == 'train' |
|
example = example.sample(n=self.max_images_per_study, axis=0) |
|
|
|
|
|
example['ViewPosition'] = example['ViewPosition'].astype(pd.CategoricalDtype(categories=VIEW_ORDER, ordered=True)) |
|
|
|
|
|
example = example.sort_values(by=['study_datetime', 'ViewPosition']) |
|
|
|
|
|
images, time_deltas = [], [] |
|
for _, row in example.iterrows(): |
|
images.append( |
|
self.load_and_preprocess_image( |
|
row['subject_id'], |
|
row['study_id'], |
|
row['dicom_id'], |
|
), |
|
) |
|
time_deltas.append(self.records.compute_time_delta(row['study_datetime'], reference_time, to_tensor=False)) |
|
|
|
if self.transforms is not None: |
|
images = torch.stack(images, 0) |
|
return images, time_deltas |
|
|
|
def load_and_preprocess_image(self, subject_id, study_id, dicom_id): |
|
""" |
|
Load and preprocess an image using torchvision.transforms.v2: |
|
https://pytorch.org/vision/stable/auto_examples/transforms/plot_transforms_getting_started.html#sphx-glr-auto-examples-transforms-plot-transforms-getting-started-py |
|
|
|
Argument/s: |
|
subject_id - subject identifier. |
|
study_id - study identifier. |
|
dicom_id - DICOM identifier. |
|
|
|
Returns: |
|
image - Tensor of the CXR. |
|
""" |
|
|
|
if self.extension == 'jpg': |
|
|
|
if self.mimic_cxr_jpg_lmdb_path is not None: |
|
|
|
|
|
key = bytes(dicom_id, 'utf-8') |
|
|
|
|
|
image = bytearray(self.txn.get(key)) |
|
image = torch.frombuffer(image, dtype=torch.uint8) |
|
image = decode_image(image) |
|
|
|
else: |
|
image_file_path = mimic_cxr_image_path(self.mimic_cxr_dir, subject_id, study_id, dicom_id, self.extension) |
|
image = read_image(image_file_path) |
|
|
|
elif self.extension == 'dcm': |
|
raise NotImplementedError |
|
|
|
if self.transforms is not None: |
|
image = self.transforms(image) |
|
|
|
return image |
|
|