|
from collections import OrderedDict |
|
from functools import partial |
|
from typing import Optional, Tuple, Union |
|
from math import isqrt |
|
|
|
import torch |
|
import torch.nn as nn |
|
from timm.models.layers import DropPath, to_2tuple, trunc_normal_ |
|
from transformers import ViTConfig |
|
from transformers.modeling_outputs import ModelOutput |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.utils import logging |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
layer_scale = False |
|
init_value = 1e-6 |
|
|
|
|
|
class Mlp(nn.Module): |
|
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): |
|
super().__init__() |
|
out_features = out_features or in_features |
|
hidden_features = hidden_features or in_features |
|
self.fc1 = nn.Linear(in_features, hidden_features) |
|
self.act = act_layer() |
|
self.fc2 = nn.Linear(hidden_features, out_features) |
|
self.drop = nn.Dropout(drop) |
|
|
|
def forward(self, x): |
|
x = self.fc1(x) |
|
x = self.act(x) |
|
x = self.drop(x) |
|
x = self.fc2(x) |
|
x = self.drop(x) |
|
return x |
|
|
|
|
|
class CMlp(nn.Module): |
|
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): |
|
super().__init__() |
|
out_features = out_features or in_features |
|
hidden_features = hidden_features or in_features |
|
self.fc1 = nn.Conv2d(in_features, hidden_features, 1) |
|
self.act = act_layer() |
|
self.fc2 = nn.Conv2d(hidden_features, out_features, 1) |
|
self.drop = nn.Dropout(drop) |
|
|
|
def forward(self, x): |
|
x = self.fc1(x) |
|
x = self.act(x) |
|
x = self.drop(x) |
|
x = self.fc2(x) |
|
x = self.drop(x) |
|
return x |
|
|
|
|
|
class Attention(nn.Module): |
|
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.): |
|
super().__init__() |
|
self.num_heads = num_heads |
|
head_dim = dim // num_heads |
|
self.scale = qk_scale or head_dim ** -0.5 |
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) |
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.proj = nn.Linear(dim, dim) |
|
self.proj_drop = nn.Dropout(proj_drop) |
|
|
|
def forward(self, x): |
|
B, N, C = x.shape |
|
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) |
|
q, k, v = qkv[0], qkv[1], qkv[2] |
|
|
|
attn = (q @ k.transpose(-2, -1)) * self.scale |
|
attn = attn.softmax(dim=-1) |
|
attn = self.attn_drop(attn) |
|
|
|
x = (attn @ v).transpose(1, 2).reshape(B, N, C) |
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
return x |
|
|
|
|
|
class CBlock(nn.Module): |
|
def __init__(self, dim, mlp_ratio=4., drop=0., drop_path=0., act_layer=nn.GELU): |
|
super().__init__() |
|
self.pos_embed = nn.Conv2d(dim, dim, 3, padding=1, groups=dim) |
|
self.norm1 = nn.BatchNorm2d(dim) |
|
self.conv1 = nn.Conv2d(dim, dim, 1) |
|
self.conv2 = nn.Conv2d(dim, dim, 1) |
|
self.attn = nn.Conv2d(dim, dim, 5, padding=2, groups=dim) |
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
self.norm2 = nn.BatchNorm2d(dim) |
|
mlp_hidden_dim = int(dim * mlp_ratio) |
|
self.mlp = CMlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) |
|
|
|
def forward(self, x): |
|
x = x + self.pos_embed(x) |
|
x = x + self.module_1(x) |
|
x = x + self.module_2(x) |
|
return x |
|
|
|
def module_1(self, x): |
|
x = self.norm1(x.to(dtype=self.norm1.weight.dtype)) |
|
x = self.conv1(x) |
|
x = self.attn(x) |
|
x = self.conv2(x) |
|
x = self.drop_path(x) |
|
return x |
|
|
|
def module_2(self, x): |
|
x = self.norm2(x.to(dtype=self.norm2.weight.dtype)) |
|
x = self.mlp(x) |
|
x = self.drop_path(x) |
|
return x |
|
|
|
class SABlock(nn.Module): |
|
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., |
|
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): |
|
super().__init__() |
|
self.pos_embed = nn.Conv2d(dim, dim, 3, padding=1, groups=dim) |
|
self.norm1 = norm_layer(dim) |
|
self.attn = Attention( |
|
dim, |
|
num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, |
|
attn_drop=attn_drop, proj_drop=drop) |
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
self.norm2 = norm_layer(dim) |
|
mlp_hidden_dim = int(dim * mlp_ratio) |
|
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) |
|
global layer_scale |
|
self.ls = layer_scale |
|
if self.ls: |
|
global init_value |
|
print(f"Use layer_scale: {layer_scale}, init_values: {init_value}") |
|
self.gamma_1 = nn.Parameter(init_value * torch.ones((dim)),requires_grad=True) |
|
self.gamma_2 = nn.Parameter(init_value * torch.ones((dim)),requires_grad=True) |
|
|
|
def forward(self, x): |
|
x = x + self.pos_embed(x) |
|
B, N, H, W = x.shape |
|
x = x.flatten(2).transpose(1, 2) |
|
if self.ls: |
|
x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x))) |
|
x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x))) |
|
else: |
|
x = x + self.drop_path(self.attn(self.norm1(x))) |
|
x = x + self.drop_path(self.mlp(self.norm2(x))) |
|
x = x.transpose(1, 2).reshape(B, N, H, W) |
|
return x |
|
|
|
|
|
class HeadEmbedding(nn.Module): |
|
def __init__(self, in_channels, out_channels): |
|
super(HeadEmbedding, self).__init__() |
|
|
|
self.proj = nn.Sequential( |
|
nn.Conv2d(in_channels, out_channels // 2, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)), |
|
nn.BatchNorm2d(out_channels // 2), |
|
nn.GELU(), |
|
nn.Conv2d(out_channels // 2, out_channels, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)), |
|
nn.BatchNorm2d(out_channels), |
|
) |
|
|
|
def forward(self, x): |
|
x = self.proj(x) |
|
return x |
|
|
|
|
|
class MiddleEmbedding(nn.Module): |
|
def __init__(self, in_channels, out_channels): |
|
super(MiddleEmbedding, self).__init__() |
|
|
|
self.proj = nn.Sequential( |
|
nn.Conv2d(in_channels, out_channels, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)), |
|
nn.BatchNorm2d(out_channels), |
|
) |
|
|
|
def forward(self, x): |
|
x = self.proj(x) |
|
return x |
|
|
|
|
|
class PatchEmbed(nn.Module): |
|
def __init__(self, image_size=224, patch_size=16, in_chans=3, embed_dim=768): |
|
super().__init__() |
|
image_size = to_2tuple(image_size) |
|
patch_size = to_2tuple(patch_size) |
|
num_patches_height = image_size[0] // patch_size[0] |
|
num_patches_width = image_size[1] // patch_size[1] |
|
num_patches = num_patches_height * num_patches_width |
|
self.image_size = image_size |
|
self.patch_size = patch_size |
|
self.num_patches = num_patches |
|
|
|
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) |
|
self.norm = nn.LayerNorm(embed_dim) |
|
|
|
def forward(self, x): |
|
_, _, H, W = x.shape |
|
assert H == self.image_size[0] and W == self.image_size[1], \ |
|
f"Input image size ({H}*{W}) doesn't match model ({self.image_size[0]}*{self.image_size[1]})." |
|
x = self.proj(x) |
|
B, _, H, W = x.shape |
|
x = x.flatten(2).transpose(1, 2) |
|
x = self.norm(x) |
|
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() |
|
return x |
|
|
|
|
|
class UniFormer(nn.Module): |
|
def __init__(self, depth=[3, 4, 8, 3], image_size=224, in_chans=3, num_classes=1000, embed_dim=[64, 128, 320, 512], |
|
head_dim=64, mlp_ratio=4., qkv_bias=True, qk_scale=None, representation_size=None, patch_size=[4, 2, 2, 2], |
|
drop_rate=0., attn_drop_rate=0., drop_path_rate=0., conv_stem=False, layer_norm_eps=1e-6, **kwargs): |
|
super().__init__() |
|
self.num_classes = num_classes |
|
self.num_features = self.embed_dim = embed_dim |
|
norm_layer = partial(nn.LayerNorm, eps=layer_norm_eps) |
|
if conv_stem: |
|
self.patch_embed1 = HeadEmbedding(in_channels=in_chans, out_channels=embed_dim[0]) |
|
self.patch_embed2 = MiddleEmbedding(in_channels=embed_dim[0], out_channels=embed_dim[1]) |
|
self.patch_embed3 = MiddleEmbedding(in_channels=embed_dim[1], out_channels=embed_dim[2]) |
|
self.patch_embed4 = MiddleEmbedding(in_channels=embed_dim[2], out_channels=embed_dim[3]) |
|
else: |
|
self.patch_embed1 = PatchEmbed( |
|
image_size=image_size, patch_size=patch_size[0], in_chans=in_chans, embed_dim=embed_dim[0]) |
|
self.patch_embed2 = PatchEmbed( |
|
image_size=image_size // patch_size[0], patch_size=patch_size[1], in_chans=embed_dim[0], embed_dim=embed_dim[1]) |
|
self.patch_embed3 = PatchEmbed( |
|
image_size=image_size // (patch_size[0]*patch_size[1]), patch_size=patch_size[2], in_chans=embed_dim[1], embed_dim=embed_dim[2]) |
|
self.patch_embed4 = PatchEmbed( |
|
image_size=image_size // (patch_size[0]*patch_size[1]*patch_size[2]), patch_size=patch_size[3], in_chans=embed_dim[2], embed_dim=embed_dim[3]) |
|
|
|
self.pos_drop = nn.Dropout(p=drop_rate) |
|
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depth))] |
|
num_heads = [dim // head_dim for dim in embed_dim] |
|
self.blocks1 = nn.ModuleList([ |
|
CBlock(dim=embed_dim[0], mlp_ratio=mlp_ratio, drop=drop_rate, drop_path=dpr[i]) |
|
for i in range(depth[0])]) |
|
self.blocks2 = nn.ModuleList([ |
|
CBlock(dim=embed_dim[1], mlp_ratio=mlp_ratio, drop=drop_rate, drop_path=dpr[i+depth[0]]) |
|
for i in range(depth[1])]) |
|
self.blocks3 = nn.ModuleList([ |
|
SABlock( |
|
dim=embed_dim[2], num_heads=num_heads[2], mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, |
|
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i+depth[0]+depth[1]], norm_layer=norm_layer) |
|
for i in range(depth[2])]) |
|
self.blocks4 = nn.ModuleList([ |
|
SABlock( |
|
dim=embed_dim[3], num_heads=num_heads[3], mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, |
|
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i+depth[0]+depth[1]+depth[2]], norm_layer=norm_layer) |
|
for i in range(depth[3])]) |
|
self.norm = nn.BatchNorm2d(embed_dim[-1]) |
|
|
|
|
|
if representation_size: |
|
self.num_features = representation_size |
|
self.pre_logits = nn.Sequential(OrderedDict([ |
|
('fc', nn.Linear(embed_dim, representation_size)), |
|
('act', nn.Tanh()) |
|
])) |
|
else: |
|
self.pre_logits = nn.Identity() |
|
|
|
def forward_features(self, x): |
|
x = self.patch_embed1(x) |
|
x = self.pos_drop(x) |
|
for blk in self.blocks1: |
|
x = blk(x) |
|
x = self.patch_embed2(x) |
|
for blk in self.blocks2: |
|
x = blk(x) |
|
x = self.patch_embed3(x) |
|
for blk in self.blocks3: |
|
x = blk(x) |
|
x = self.patch_embed4(x) |
|
for blk in self.blocks4: |
|
x = blk(x) |
|
x = self.norm(x.to(dtype=self.norm.weight.dtype)) |
|
x = self.pre_logits(x) |
|
return x |
|
|
|
def forward(self, x): |
|
x = self.forward_features(x) |
|
return x |
|
|
|
|
|
class UniFormerPreTrainedModel(PreTrainedModel): |
|
""" |
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained |
|
models. |
|
""" |
|
|
|
config_class = ViTConfig |
|
base_model_prefix = "vit" |
|
main_input_name = "pixel_values" |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, nn.Linear): |
|
trunc_normal_(m.weight, std=.02) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.LayerNorm): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
|
|
|
|
class UniFormerProjectionHead(torch.nn.Module): |
|
|
|
def __init__(self, config) -> None: |
|
super().__init__() |
|
|
|
|
|
self.layer_norm = torch.nn.LayerNorm(config.embed_dim[-1], eps=config.layer_norm_eps) |
|
|
|
|
|
self.projection = torch.nn.Linear(config.embed_dim[-1], config.projection_size, bias=False) |
|
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
x = self.layer_norm(x) |
|
x = self.projection(x) |
|
return x |
|
|
|
|
|
class UniFormerModel(UniFormerPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
self.uniformer = UniFormer(**vars(config)) |
|
|
|
|
|
self.post_init() |
|
|
|
def forward( |
|
self, |
|
pixel_values: Optional[torch.Tensor] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, ModelOutput]: |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
last_hidden_state = self.uniformer(pixel_values) |
|
|
|
|
|
last_hidden_state = torch.flatten(last_hidden_state, 2) |
|
|
|
|
|
last_hidden_state = torch.permute(last_hidden_state, [0, 2, 1]) |
|
|
|
|
|
if not return_dict: |
|
return last_hidden_state |
|
|
|
return ModelOutput(last_hidden_state=last_hidden_state) |
|
|
|
|
|
class MultiUniFormerWithProjectionHead(UniFormerPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
self.uniformer = UniFormer(**vars(config)) |
|
self.projection_head = UniFormerProjectionHead(config) |
|
|
|
|
|
self.post_init() |
|
|
|
def forward( |
|
self, |
|
pixel_values: Optional[torch.Tensor] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, ModelOutput]: |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
assert len(pixel_values.shape) == 5, 'pixel_values must be B, S, C, H, W, where S is the max number of images for a study in the batch.' |
|
last_hidden_state = self.uniformer(pixel_values.view(-1, *pixel_values.shape[2:])) |
|
|
|
|
|
|
|
last_hidden_state = torch.flatten(last_hidden_state, 2) |
|
|
|
|
|
projection = self.projection_head(torch.permute(last_hidden_state, [0, 2, 1])) |
|
|
|
|
|
projection = projection.view(pixel_values.shape[0], -1, projection.shape[-1]) |
|
|
|
|
|
mask = (pixel_values[:, :, 0, 0, 0] != 0.0)[:, :, None] |
|
attention_mask = torch.ones( |
|
[projection.shape[0], pixel_values.shape[1], projection.shape[1] // pixel_values.shape[1]], |
|
dtype=torch.long, |
|
device=mask.device, |
|
) |
|
attention_mask = attention_mask * mask |
|
attention_mask = attention_mask.view(attention_mask.shape[0], -1) |
|
|
|
if not return_dict: |
|
return projection |
|
|
|
return ModelOutput(last_hidden_state=projection, attention_mask=attention_mask) |
|
|
|
|
|
if __name__ == '__main__': |
|
y = PatchEmbed() |
|
y(torch.randn(2, 3, 224, 224)) |
|
|