File size: 2,134 Bytes
02a1bb4 6e6bb40 02a1bb4 6e6bb40 02a1bb4 6e6bb40 02a1bb4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
license: apache-2.0
base_model: projecte-aina/roberta-base-ca-v2-cased-te
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: modelofine2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# modelofine2
This model is a fine-tuned version of [projecte-aina/roberta-base-ca-v2-cased-te](https://huggingface.co/projecte-aina/roberta-base-ca-v2-cased-te) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.6811
- Accuracy: 0.6471
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7e-05
- train_batch_size: 20
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 60
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-------:|:----:|:---------------:|:--------:|
| No log | 3.2258 | 100 | 2.7256 | 0.5546 |
| No log | 6.4516 | 200 | 2.7585 | 0.5714 |
| No log | 9.6774 | 300 | 2.9830 | 0.5378 |
| No log | 12.9032 | 400 | 3.8506 | 0.5042 |
| 0.0468 | 16.1290 | 500 | 3.4211 | 0.5294 |
| 0.0468 | 19.3548 | 600 | 2.7938 | 0.5882 |
| 0.0468 | 22.5806 | 700 | 2.9805 | 0.6050 |
| 0.0468 | 25.8065 | 800 | 2.9111 | 0.5882 |
| 0.0468 | 29.0323 | 900 | 2.7054 | 0.6134 |
| 0.0358 | 32.2581 | 1000 | 2.6811 | 0.6471 |
| 0.0358 | 35.4839 | 1100 | 2.8372 | 0.6134 |
### Framework versions
- Transformers 4.40.0
- Pytorch 2.1.0+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1
|