metadata
library_name: sklearn
tags:
- sklearn
- skops
- tabular-regression
model_format: pickle
model_file: ubcv_grade_predictor_ridge.joblib
widget:
- structuredData:
Campus:
- UBCV
Course:
- 110
CourseLevel:
- 1
Course_Avg_Roll_1y:
- 73.5864074445
Course_Max_Last_3y:
- 91
Course_Min_Last_3y:
- 71.898305085
Course_Std_Last_3y:
- 7.270712022509893
Prev_50-54:
- 1
Prev_55-59:
- 5
Prev_60-63:
- 11
Prev_64-67:
- 12
Prev_68-71:
- 14
Prev_72-75:
- 15
Prev_76-79:
- 11
Prev_80-84:
- 31
Prev_85-89:
- 23
Prev_90-100:
- 23
Prev_<50:
- 31
Prev_High:
- 97
Prev_Low:
- 5
Prev_Median:
- .nan
Prev_Percentile (25):
- .nan
Prev_Percentile (75):
- .nan
Prof_Courses_Taught:
- .nan
Prof_Prev_50-54:
- .nan
Prof_Prev_55-59:
- .nan
Prof_Prev_60-63:
- .nan
Prof_Prev_64-67:
- .nan
Prof_Prev_68-71:
- .nan
Prof_Prev_72-75:
- .nan
Prof_Prev_76-79:
- .nan
Prof_Prev_80-84:
- .nan
Prof_Prev_85-89:
- .nan
Prof_Prev_90-100:
- .nan
Prof_Prev_<50:
- .nan
Prof_Prev_High:
- .nan
Prof_Prev_Low:
- .nan
Prof_Prev_Median:
- .nan
Prof_Prev_Percentile (25):
- .nan
Prof_Prev_Percentile (75):
- .nan
Professor:
- ''
Session:
- W
Subject:
- CPSC
SubjectCourse:
- CPSC110
Year:
- 2018
Years_Since_Start:
- 4
Model description
[More Information Needed]
Intended uses & limitations
[More Information Needed]
Training Procedure
[More Information Needed]
Hyperparameters
Click to expand
Hyperparameter | Value |
---|---|
memory | |
steps | [('columntransformer', ColumnTransformer(transformers=[('pipeline-1', Pipeline(steps=[('simpleimputer', SimpleImputer()), ('standardscaler', StandardScaler())]), ['Course_Avg_Roll_1y', 'Course_Min_Last_3y', 'Course_Max_Last_3y', 'Course_Std_Last_3y']), ('pipeline-2', Pipeline(steps=[('simpleimputer', SimpleImputer(strategy='most_frequent')), ('onehotencoder', OneHotEncoder(drop='if_b... SimpleImputer(strategy='most_frequent')), ('ordinalencoder', OrdinalEncoder(handle_unknown='use_encoded_value', unknown_value=-1))]), ['CourseLevel', 'Years_Since_Start', 'Prof_Courses_Taught', 'Year']), ('drop', 'drop', ['Reported', 'Section', 'Detail', 'Median', 'Percentile (25)', 'Percentile (75)', 'High', 'Low', '<50', '50-54', '55-59', '60-63', '64-67', '68-71', '72-75', '76-79', '80-84', '85-89', '90-100'])])), ('ridge', Ridge(alpha=2.091, random_state=42))] |
transform_input | |
verbose | False |
columntransformer | ColumnTransformer(transformers=[('pipeline-1', Pipeline(steps=[('simpleimputer', SimpleImputer()), ('standardscaler', StandardScaler())]), ['Course_Avg_Roll_1y', 'Course_Min_Last_3y', 'Course_Max_Last_3y', 'Course_Std_Last_3y']), ('pipeline-2', Pipeline(steps=[('simpleimputer', SimpleImputer(strategy='most_frequent')), ('onehotencoder', OneHotEncoder(drop='if_b... SimpleImputer(strategy='most_frequent')), ('ordinalencoder', OrdinalEncoder(handle_unknown='use_encoded_value', unknown_value=-1))]), ['CourseLevel', 'Years_Since_Start', 'Prof_Courses_Taught', 'Year']), ('drop', 'drop', ['Reported', 'Section', 'Detail', 'Median', 'Percentile (25)', 'Percentile (75)', 'High', 'Low', '<50', '50-54', '55-59', '60-63', '64-67', '68-71', '72-75', '76-79', '80-84', '85-89', '90-100'])]) |
ridge | Ridge(alpha=2.091, random_state=42) |
columntransformer__force_int_remainder_cols | True |
columntransformer__n_jobs | |
columntransformer__remainder | drop |
columntransformer__sparse_threshold | 0.3 |
columntransformer__transformer_weights | |
columntransformer__transformers | [('pipeline-1', Pipeline(steps=[('simpleimputer', SimpleImputer()), ('standardscaler', StandardScaler())]), ['Course_Avg_Roll_1y', 'Course_Min_Last_3y', 'Course_Max_Last_3y', 'Course_Std_Last_3y']), ('pipeline-2', Pipeline(steps=[('simpleimputer', SimpleImputer(strategy='most_frequent')), ('onehotencoder', OneHotEncoder(drop='if_binary', handle_unknown='ignore'))]), ['Campus', 'Session', 'SubjectCourse', 'Professor', 'Subject']), ('pipeline-3', Pipeline(steps=[('simpleimputer', SimpleImputer(strategy='most_frequent')), ('ordinalencoder', OrdinalEncoder(handle_unknown='use_encoded_value', unknown_value=-1))]), ['CourseLevel', 'Years_Since_Start', 'Prof_Courses_Taught', 'Year']), ('drop', 'drop', ['Reported', 'Section', 'Detail', 'Median', 'Percentile (25)', 'Percentile (75)', 'High', 'Low', '<50', '50-54', '55-59', '60-63', '64-67', '68-71', '72-75', '76-79', '80-84', '85-89', '90-100'])] |
columntransformer__verbose | False |
columntransformer__verbose_feature_names_out | True |
columntransformer__pipeline-1 | Pipeline(steps=[('simpleimputer', SimpleImputer()), ('standardscaler', StandardScaler())]) |
columntransformer__pipeline-2 | Pipeline(steps=[('simpleimputer', SimpleImputer(strategy='most_frequent')), ('onehotencoder', OneHotEncoder(drop='if_binary', handle_unknown='ignore'))]) |
columntransformer__pipeline-3 | Pipeline(steps=[('simpleimputer', SimpleImputer(strategy='most_frequent')), ('ordinalencoder', OrdinalEncoder(handle_unknown='use_encoded_value', unknown_value=-1))]) |
columntransformer__drop | drop |
columntransformer__pipeline-1__memory | |
columntransformer__pipeline-1__steps | [('simpleimputer', SimpleImputer()), ('standardscaler', StandardScaler())] |
columntransformer__pipeline-1__transform_input | |
columntransformer__pipeline-1__verbose | False |
columntransformer__pipeline-1__simpleimputer | SimpleImputer() |
columntransformer__pipeline-1__standardscaler | StandardScaler() |
columntransformer__pipeline-1__simpleimputer__add_indicator | False |
columntransformer__pipeline-1__simpleimputer__copy | True |
columntransformer__pipeline-1__simpleimputer__fill_value | |
columntransformer__pipeline-1__simpleimputer__keep_empty_features | False |
columntransformer__pipeline-1__simpleimputer__missing_values | nan |
columntransformer__pipeline-1__simpleimputer__strategy | mean |
columntransformer__pipeline-1__standardscaler__copy | True |
columntransformer__pipeline-1__standardscaler__with_mean | True |
columntransformer__pipeline-1__standardscaler__with_std | True |
columntransformer__pipeline-2__memory | |
columntransformer__pipeline-2__steps | [('simpleimputer', SimpleImputer(strategy='most_frequent')), ('onehotencoder', OneHotEncoder(drop='if_binary', handle_unknown='ignore'))] |
columntransformer__pipeline-2__transform_input | |
columntransformer__pipeline-2__verbose | False |
columntransformer__pipeline-2__simpleimputer | SimpleImputer(strategy='most_frequent') |
columntransformer__pipeline-2__onehotencoder | OneHotEncoder(drop='if_binary', handle_unknown='ignore') |
columntransformer__pipeline-2__simpleimputer__add_indicator | False |
columntransformer__pipeline-2__simpleimputer__copy | True |
columntransformer__pipeline-2__simpleimputer__fill_value | |
columntransformer__pipeline-2__simpleimputer__keep_empty_features | False |
columntransformer__pipeline-2__simpleimputer__missing_values | nan |
columntransformer__pipeline-2__simpleimputer__strategy | most_frequent |
columntransformer__pipeline-2__onehotencoder__categories | auto |
columntransformer__pipeline-2__onehotencoder__drop | if_binary |
columntransformer__pipeline-2__onehotencoder__dtype | <class 'numpy.float64'> |
columntransformer__pipeline-2__onehotencoder__feature_name_combiner | concat |
columntransformer__pipeline-2__onehotencoder__handle_unknown | ignore |
columntransformer__pipeline-2__onehotencoder__max_categories | |
columntransformer__pipeline-2__onehotencoder__min_frequency | |
columntransformer__pipeline-2__onehotencoder__sparse_output | True |
columntransformer__pipeline-3__memory | |
columntransformer__pipeline-3__steps | [('simpleimputer', SimpleImputer(strategy='most_frequent')), ('ordinalencoder', OrdinalEncoder(handle_unknown='use_encoded_value', unknown_value=-1))] |
columntransformer__pipeline-3__transform_input | |
columntransformer__pipeline-3__verbose | False |
columntransformer__pipeline-3__simpleimputer | SimpleImputer(strategy='most_frequent') |
columntransformer__pipeline-3__ordinalencoder | OrdinalEncoder(handle_unknown='use_encoded_value', unknown_value=-1) |
columntransformer__pipeline-3__simpleimputer__add_indicator | False |
columntransformer__pipeline-3__simpleimputer__copy | True |
columntransformer__pipeline-3__simpleimputer__fill_value | |
columntransformer__pipeline-3__simpleimputer__keep_empty_features | False |
columntransformer__pipeline-3__simpleimputer__missing_values | nan |
columntransformer__pipeline-3__simpleimputer__strategy | most_frequent |
columntransformer__pipeline-3__ordinalencoder__categories | auto |
columntransformer__pipeline-3__ordinalencoder__dtype | <class 'numpy.float64'> |
columntransformer__pipeline-3__ordinalencoder__encoded_missing_value | nan |
columntransformer__pipeline-3__ordinalencoder__handle_unknown | use_encoded_value |
columntransformer__pipeline-3__ordinalencoder__max_categories | |
columntransformer__pipeline-3__ordinalencoder__min_frequency | |
columntransformer__pipeline-3__ordinalencoder__unknown_value | -1 |
ridge__alpha | 2.091 |
ridge__copy_X | True |
ridge__fit_intercept | True |
ridge__max_iter | |
ridge__positive | False |
ridge__random_state | 42 |
ridge__solver | auto |
ridge__tol | 0.0001 |
Model Plot
Pipeline(steps=[('columntransformer',ColumnTransformer(transformers=[('pipeline-1',Pipeline(steps=[('simpleimputer',SimpleImputer()),('standardscaler',StandardScaler())]),['Course_Avg_Roll_1y','Course_Min_Last_3y','Course_Max_Last_3y','Course_Std_Last_3y']),('pipeline-2',Pipeline(steps=[('simpleimputer',SimpleImputer(strategy='most_frequent')),('on...OrdinalEncoder(handle_unknown='use_encoded_value',unknown_value=-1))]),['CourseLevel','Years_Since_Start','Prof_Courses_Taught','Year']),('drop', 'drop',['Reported', 'Section','Detail', 'Median','Percentile (25)','Percentile (75)', 'High','Low', '<50', '50-54','55-59', '60-63', '64-67','68-71', '72-75', '76-79','80-84', '85-89','90-100'])])),('ridge', Ridge(alpha=2.091, random_state=42))])In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
Pipeline(steps=[('columntransformer',ColumnTransformer(transformers=[('pipeline-1',Pipeline(steps=[('simpleimputer',SimpleImputer()),('standardscaler',StandardScaler())]),['Course_Avg_Roll_1y','Course_Min_Last_3y','Course_Max_Last_3y','Course_Std_Last_3y']),('pipeline-2',Pipeline(steps=[('simpleimputer',SimpleImputer(strategy='most_frequent')),('on...OrdinalEncoder(handle_unknown='use_encoded_value',unknown_value=-1))]),['CourseLevel','Years_Since_Start','Prof_Courses_Taught','Year']),('drop', 'drop',['Reported', 'Section','Detail', 'Median','Percentile (25)','Percentile (75)', 'High','Low', '<50', '50-54','55-59', '60-63', '64-67','68-71', '72-75', '76-79','80-84', '85-89','90-100'])])),('ridge', Ridge(alpha=2.091, random_state=42))])
ColumnTransformer(transformers=[('pipeline-1',Pipeline(steps=[('simpleimputer',SimpleImputer()),('standardscaler',StandardScaler())]),['Course_Avg_Roll_1y', 'Course_Min_Last_3y','Course_Max_Last_3y', 'Course_Std_Last_3y']),('pipeline-2',Pipeline(steps=[('simpleimputer',SimpleImputer(strategy='most_frequent')),('onehotencoder',OneHotEncoder(drop='if_b...SimpleImputer(strategy='most_frequent')),('ordinalencoder',OrdinalEncoder(handle_unknown='use_encoded_value',unknown_value=-1))]),['CourseLevel', 'Years_Since_Start','Prof_Courses_Taught', 'Year']),('drop', 'drop',['Reported', 'Section', 'Detail', 'Median','Percentile (25)', 'Percentile (75)', 'High','Low', '<50', '50-54', '55-59', '60-63','64-67', '68-71', '72-75', '76-79', '80-84','85-89', '90-100'])])
['Course_Avg_Roll_1y', 'Course_Min_Last_3y', 'Course_Max_Last_3y', 'Course_Std_Last_3y']
SimpleImputer()
StandardScaler()
['Campus', 'Session', 'SubjectCourse', 'Professor', 'Subject']
SimpleImputer(strategy='most_frequent')
OneHotEncoder(drop='if_binary', handle_unknown='ignore')
['CourseLevel', 'Years_Since_Start', 'Prof_Courses_Taught', 'Year']
SimpleImputer(strategy='most_frequent')
OrdinalEncoder(handle_unknown='use_encoded_value', unknown_value=-1)
['Reported', 'Section', 'Detail', 'Median', 'Percentile (25)', 'Percentile (75)', 'High', 'Low', '<50', '50-54', '55-59', '60-63', '64-67', '68-71', '72-75', '76-79', '80-84', '85-89', '90-100']
drop
Ridge(alpha=2.091, random_state=42)
Evaluation Results
[More Information Needed]
How to Get Started with the Model
[More Information Needed]
Model Card Authors
This model card is written by following authors:
[More Information Needed]
Model Card Contact
You can contact the model card authors through following channels: [More Information Needed]
Citation
Below you can find information related to citation.
BibTeX:
[More Information Needed]