File size: 50,230 Bytes
7ecf383
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
---
library_name: sklearn
tags:
- sklearn
- skops
- tabular-regression
model_format: pickle
model_file: ubcv_grade_predictor_ridge.joblib
widget:
- structuredData:
    Campus:
    - UBCV
    Course:
    - 110
    CourseLevel:
    - 1
    Course_Avg_Roll_1y:
    - 73.5864074445
    Course_Max_Last_3y:
    - 91.0
    Course_Min_Last_3y:
    - 71.898305085
    Course_Std_Last_3y:
    - 7.270712022509893
    Prev_50-54:
    - 1.0
    Prev_55-59:
    - 5.0
    Prev_60-63:
    - 11.0
    Prev_64-67:
    - 12.0
    Prev_68-71:
    - 14.0
    Prev_72-75:
    - 15.0
    Prev_76-79:
    - 11.0
    Prev_80-84:
    - 31.0
    Prev_85-89:
    - 23.0
    Prev_90-100:
    - 23.0
    Prev_<50:
    - 31.0
    Prev_High:
    - 97.0
    Prev_Low:
    - 5.0
    Prev_Median:
    - .nan
    Prev_Percentile (25):
    - .nan
    Prev_Percentile (75):
    - .nan
    Prof_Courses_Taught:
    - .nan
    Prof_Prev_50-54:
    - .nan
    Prof_Prev_55-59:
    - .nan
    Prof_Prev_60-63:
    - .nan
    Prof_Prev_64-67:
    - .nan
    Prof_Prev_68-71:
    - .nan
    Prof_Prev_72-75:
    - .nan
    Prof_Prev_76-79:
    - .nan
    Prof_Prev_80-84:
    - .nan
    Prof_Prev_85-89:
    - .nan
    Prof_Prev_90-100:
    - .nan
    Prof_Prev_<50:
    - .nan
    Prof_Prev_High:
    - .nan
    Prof_Prev_Low:
    - .nan
    Prof_Prev_Median:
    - .nan
    Prof_Prev_Percentile (25):
    - .nan
    Prof_Prev_Percentile (75):
    - .nan
    Professor:
    - ''
    Session:
    - W
    Subject:
    - CPSC
    SubjectCourse:
    - CPSC110
    Year:
    - 2018
    Years_Since_Start:
    - 4
---

# Model description

[More Information Needed]

## Intended uses & limitations

[More Information Needed]

## Training Procedure

[More Information Needed]

### Hyperparameters

<details>
<summary> Click to expand </summary>

| Hyperparameter                                                       | Value                                                                                                                                                  |
|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| memory                                                               |                                                                                                                                                        |
| steps                                                                | [('columntransformer', ColumnTransformer(transformers=[('pipeline-1',<br />                                 Pipeline(steps=[('simpleimputer',<br />                                                  SimpleImputer()),<br />                                                 ('standardscaler',<br />                                                  StandardScaler())]),<br />                                 ['Course_Avg_Roll_1y', 'Course_Min_Last_3y',<br />                                  'Course_Max_Last_3y', 'Course_Std_Last_3y']),<br />                                ('pipeline-2',<br />                                 Pipeline(steps=[('simpleimputer',<br />                                                  SimpleImputer(strategy='most_frequent')),<br />                                                 ('onehotencoder',<br />                                                  OneHotEncoder(drop='if_b...<br />                                                  SimpleImputer(strategy='most_frequent')),<br />                                                 ('ordinalencoder',<br />                                                  OrdinalEncoder(handle_unknown='use_encoded_value',<br />                                                                 unknown_value=-1))]),<br />                                 ['CourseLevel', 'Years_Since_Start',<br />                                  'Prof_Courses_Taught', 'Year']),<br />                                ('drop', 'drop',<br />                                 ['Reported', 'Section', 'Detail', 'Median',<br />                                  'Percentile (25)', 'Percentile (75)', 'High',<br />                                  'Low', '<50', '50-54', '55-59', '60-63',<br />                                  '64-67', '68-71', '72-75', '76-79', '80-84',<br />                                  '85-89', '90-100'])])), ('ridge', Ridge(alpha=2.091, random_state=42))]                                                                                                                                                        |
| transform_input                                                      |                                                                                                                                                        |
| verbose                                                              | False                                                                                                                                                  |
| columntransformer                                                    | ColumnTransformer(transformers=[('pipeline-1',<br />                                 Pipeline(steps=[('simpleimputer',<br />                                                  SimpleImputer()),<br />                                                 ('standardscaler',<br />                                                  StandardScaler())]),<br />                                 ['Course_Avg_Roll_1y', 'Course_Min_Last_3y',<br />                                  'Course_Max_Last_3y', 'Course_Std_Last_3y']),<br />                                ('pipeline-2',<br />                                 Pipeline(steps=[('simpleimputer',<br />                                                  SimpleImputer(strategy='most_frequent')),<br />                                                 ('onehotencoder',<br />                                                  OneHotEncoder(drop='if_b...<br />                                                  SimpleImputer(strategy='most_frequent')),<br />                                                 ('ordinalencoder',<br />                                                  OrdinalEncoder(handle_unknown='use_encoded_value',<br />                                                                 unknown_value=-1))]),<br />                                 ['CourseLevel', 'Years_Since_Start',<br />                                  'Prof_Courses_Taught', 'Year']),<br />                                ('drop', 'drop',<br />                                 ['Reported', 'Section', 'Detail', 'Median',<br />                                  'Percentile (25)', 'Percentile (75)', 'High',<br />                                  'Low', '<50', '50-54', '55-59', '60-63',<br />                                  '64-67', '68-71', '72-75', '76-79', '80-84',<br />                                  '85-89', '90-100'])])                                                                                                                                                        |
| ridge                                                                | Ridge(alpha=2.091, random_state=42)                                                                                                                    |
| columntransformer__force_int_remainder_cols                          | True                                                                                                                                                   |
| columntransformer__n_jobs                                            |                                                                                                                                                        |
| columntransformer__remainder                                         | drop                                                                                                                                                   |
| columntransformer__sparse_threshold                                  | 0.3                                                                                                                                                    |
| columntransformer__transformer_weights                               |                                                                                                                                                        |
| columntransformer__transformers                                      | [('pipeline-1', Pipeline(steps=[('simpleimputer', SimpleImputer()),<br />                ('standardscaler', StandardScaler())]), ['Course_Avg_Roll_1y', 'Course_Min_Last_3y', 'Course_Max_Last_3y', 'Course_Std_Last_3y']), ('pipeline-2', Pipeline(steps=[('simpleimputer', SimpleImputer(strategy='most_frequent')),<br />                ('onehotencoder',<br />                 OneHotEncoder(drop='if_binary', handle_unknown='ignore'))]), ['Campus', 'Session', 'SubjectCourse', 'Professor', 'Subject']), ('pipeline-3', Pipeline(steps=[('simpleimputer', SimpleImputer(strategy='most_frequent')),<br />                ('ordinalencoder',<br />                 OrdinalEncoder(handle_unknown='use_encoded_value',<br />                                unknown_value=-1))]), ['CourseLevel', 'Years_Since_Start', 'Prof_Courses_Taught', 'Year']), ('drop', 'drop', ['Reported', 'Section', 'Detail', 'Median', 'Percentile (25)', 'Percentile (75)', 'High', 'Low', '<50', '50-54', '55-59', '60-63', '64-67', '68-71', '72-75', '76-79', '80-84', '85-89', '90-100'])]                                                                                                                                                        |
| columntransformer__verbose                                           | False                                                                                                                                                  |
| columntransformer__verbose_feature_names_out                         | True                                                                                                                                                   |
| columntransformer__pipeline-1                                        | Pipeline(steps=[('simpleimputer', SimpleImputer()),<br />                ('standardscaler', StandardScaler())])                                                                                                                                                        |
| columntransformer__pipeline-2                                        | Pipeline(steps=[('simpleimputer', SimpleImputer(strategy='most_frequent')),<br />                ('onehotencoder',<br />                 OneHotEncoder(drop='if_binary', handle_unknown='ignore'))])                                                                                                                                                        |
| columntransformer__pipeline-3                                        | Pipeline(steps=[('simpleimputer', SimpleImputer(strategy='most_frequent')),<br />                ('ordinalencoder',<br />                 OrdinalEncoder(handle_unknown='use_encoded_value',<br />                                unknown_value=-1))])                                                                                                                                                        |
| columntransformer__drop                                              | drop                                                                                                                                                   |
| columntransformer__pipeline-1__memory                                |                                                                                                                                                        |
| columntransformer__pipeline-1__steps                                 | [('simpleimputer', SimpleImputer()), ('standardscaler', StandardScaler())]                                                                             |
| columntransformer__pipeline-1__transform_input                       |                                                                                                                                                        |
| columntransformer__pipeline-1__verbose                               | False                                                                                                                                                  |
| columntransformer__pipeline-1__simpleimputer                         | SimpleImputer()                                                                                                                                        |
| columntransformer__pipeline-1__standardscaler                        | StandardScaler()                                                                                                                                       |
| columntransformer__pipeline-1__simpleimputer__add_indicator          | False                                                                                                                                                  |
| columntransformer__pipeline-1__simpleimputer__copy                   | True                                                                                                                                                   |
| columntransformer__pipeline-1__simpleimputer__fill_value             |                                                                                                                                                        |
| columntransformer__pipeline-1__simpleimputer__keep_empty_features    | False                                                                                                                                                  |
| columntransformer__pipeline-1__simpleimputer__missing_values         | nan                                                                                                                                                    |
| columntransformer__pipeline-1__simpleimputer__strategy               | mean                                                                                                                                                   |
| columntransformer__pipeline-1__standardscaler__copy                  | True                                                                                                                                                   |
| columntransformer__pipeline-1__standardscaler__with_mean             | True                                                                                                                                                   |
| columntransformer__pipeline-1__standardscaler__with_std              | True                                                                                                                                                   |
| columntransformer__pipeline-2__memory                                |                                                                                                                                                        |
| columntransformer__pipeline-2__steps                                 | [('simpleimputer', SimpleImputer(strategy='most_frequent')), ('onehotencoder', OneHotEncoder(drop='if_binary', handle_unknown='ignore'))]              |
| columntransformer__pipeline-2__transform_input                       |                                                                                                                                                        |
| columntransformer__pipeline-2__verbose                               | False                                                                                                                                                  |
| columntransformer__pipeline-2__simpleimputer                         | SimpleImputer(strategy='most_frequent')                                                                                                                |
| columntransformer__pipeline-2__onehotencoder                         | OneHotEncoder(drop='if_binary', handle_unknown='ignore')                                                                                               |
| columntransformer__pipeline-2__simpleimputer__add_indicator          | False                                                                                                                                                  |
| columntransformer__pipeline-2__simpleimputer__copy                   | True                                                                                                                                                   |
| columntransformer__pipeline-2__simpleimputer__fill_value             |                                                                                                                                                        |
| columntransformer__pipeline-2__simpleimputer__keep_empty_features    | False                                                                                                                                                  |
| columntransformer__pipeline-2__simpleimputer__missing_values         | nan                                                                                                                                                    |
| columntransformer__pipeline-2__simpleimputer__strategy               | most_frequent                                                                                                                                          |
| columntransformer__pipeline-2__onehotencoder__categories             | auto                                                                                                                                                   |
| columntransformer__pipeline-2__onehotencoder__drop                   | if_binary                                                                                                                                              |
| columntransformer__pipeline-2__onehotencoder__dtype                  | <class 'numpy.float64'>                                                                                                                                |
| columntransformer__pipeline-2__onehotencoder__feature_name_combiner  | concat                                                                                                                                                 |
| columntransformer__pipeline-2__onehotencoder__handle_unknown         | ignore                                                                                                                                                 |
| columntransformer__pipeline-2__onehotencoder__max_categories         |                                                                                                                                                        |
| columntransformer__pipeline-2__onehotencoder__min_frequency          |                                                                                                                                                        |
| columntransformer__pipeline-2__onehotencoder__sparse_output          | True                                                                                                                                                   |
| columntransformer__pipeline-3__memory                                |                                                                                                                                                        |
| columntransformer__pipeline-3__steps                                 | [('simpleimputer', SimpleImputer(strategy='most_frequent')), ('ordinalencoder', OrdinalEncoder(handle_unknown='use_encoded_value', unknown_value=-1))] |
| columntransformer__pipeline-3__transform_input                       |                                                                                                                                                        |
| columntransformer__pipeline-3__verbose                               | False                                                                                                                                                  |
| columntransformer__pipeline-3__simpleimputer                         | SimpleImputer(strategy='most_frequent')                                                                                                                |
| columntransformer__pipeline-3__ordinalencoder                        | OrdinalEncoder(handle_unknown='use_encoded_value', unknown_value=-1)                                                                                   |
| columntransformer__pipeline-3__simpleimputer__add_indicator          | False                                                                                                                                                  |
| columntransformer__pipeline-3__simpleimputer__copy                   | True                                                                                                                                                   |
| columntransformer__pipeline-3__simpleimputer__fill_value             |                                                                                                                                                        |
| columntransformer__pipeline-3__simpleimputer__keep_empty_features    | False                                                                                                                                                  |
| columntransformer__pipeline-3__simpleimputer__missing_values         | nan                                                                                                                                                    |
| columntransformer__pipeline-3__simpleimputer__strategy               | most_frequent                                                                                                                                          |
| columntransformer__pipeline-3__ordinalencoder__categories            | auto                                                                                                                                                   |
| columntransformer__pipeline-3__ordinalencoder__dtype                 | <class 'numpy.float64'>                                                                                                                                |
| columntransformer__pipeline-3__ordinalencoder__encoded_missing_value | nan                                                                                                                                                    |
| columntransformer__pipeline-3__ordinalencoder__handle_unknown        | use_encoded_value                                                                                                                                      |
| columntransformer__pipeline-3__ordinalencoder__max_categories        |                                                                                                                                                        |
| columntransformer__pipeline-3__ordinalencoder__min_frequency         |                                                                                                                                                        |
| columntransformer__pipeline-3__ordinalencoder__unknown_value         | -1                                                                                                                                                     |
| ridge__alpha                                                         | 2.091                                                                                                                                                  |
| ridge__copy_X                                                        | True                                                                                                                                                   |
| ridge__fit_intercept                                                 | True                                                                                                                                                   |
| ridge__max_iter                                                      |                                                                                                                                                        |
| ridge__positive                                                      | False                                                                                                                                                  |
| ridge__random_state                                                  | 42                                                                                                                                                     |
| ridge__solver                                                        | auto                                                                                                                                                   |
| ridge__tol                                                           | 0.0001                                                                                                                                                 |

</details>

### Model Plot

<style>#sk-container-id-1 {/* Definition of color scheme common for light and dark mode */--sklearn-color-text: #000;--sklearn-color-text-muted: #666;--sklearn-color-line: gray;/* Definition of color scheme for unfitted estimators */--sklearn-color-unfitted-level-0: #fff5e6;--sklearn-color-unfitted-level-1: #f6e4d2;--sklearn-color-unfitted-level-2: #ffe0b3;--sklearn-color-unfitted-level-3: chocolate;/* Definition of color scheme for fitted estimators */--sklearn-color-fitted-level-0: #f0f8ff;--sklearn-color-fitted-level-1: #d4ebff;--sklearn-color-fitted-level-2: #b3dbfd;--sklearn-color-fitted-level-3: cornflowerblue;/* Specific color for light theme */--sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));--sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, white)));--sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));--sklearn-color-icon: #696969;@media (prefers-color-scheme: dark) {/* Redefinition of color scheme for dark theme */--sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));--sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, #111)));--sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));--sklearn-color-icon: #878787;}
}#sk-container-id-1 {color: var(--sklearn-color-text);
}#sk-container-id-1 pre {padding: 0;
}#sk-container-id-1 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;
}#sk-container-id-1 div.sk-dashed-wrapped {border: 1px dashed var(--sklearn-color-line);margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: var(--sklearn-color-background);
}#sk-container-id-1 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }`but bootstrap.min.css set `[hidden] { display: none !important; }`so we also need the `!important` here to be able to override thedefault hidden behavior on the sphinx rendered scikit-learn.org.See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;
}#sk-container-id-1 div.sk-text-repr-fallback {display: none;
}div.sk-parallel-item,
div.sk-serial,
div.sk-item {/* draw centered vertical line to link estimators */background-image: linear-gradient(var(--sklearn-color-text-on-default-background), var(--sklearn-color-text-on-default-background));background-size: 2px 100%;background-repeat: no-repeat;background-position: center center;
}/* Parallel-specific style estimator block */#sk-container-id-1 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 2px solid var(--sklearn-color-text-on-default-background);flex-grow: 1;
}#sk-container-id-1 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: var(--sklearn-color-background);position: relative;
}#sk-container-id-1 div.sk-parallel-item {display: flex;flex-direction: column;
}#sk-container-id-1 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;
}#sk-container-id-1 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;
}#sk-container-id-1 div.sk-parallel-item:only-child::after {width: 0;
}/* Serial-specific style estimator block */#sk-container-id-1 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: var(--sklearn-color-background);padding-right: 1em;padding-left: 1em;
}/* Toggleable style: style used for estimator/Pipeline/ColumnTransformer box that is
clickable and can be expanded/collapsed.
- Pipeline and ColumnTransformer use this feature and define the default style
- Estimators will overwrite some part of the style using the `sk-estimator` class
*//* Pipeline and ColumnTransformer style (default) */#sk-container-id-1 div.sk-toggleable {/* Default theme specific background. It is overwritten whether we have aspecific estimator or a Pipeline/ColumnTransformer */background-color: var(--sklearn-color-background);
}/* Toggleable label */
#sk-container-id-1 label.sk-toggleable__label {cursor: pointer;display: flex;width: 100%;margin-bottom: 0;padding: 0.5em;box-sizing: border-box;text-align: center;align-items: start;justify-content: space-between;gap: 0.5em;
}#sk-container-id-1 label.sk-toggleable__label .caption {font-size: 0.6rem;font-weight: lighter;color: var(--sklearn-color-text-muted);
}#sk-container-id-1 label.sk-toggleable__label-arrow:before {/* Arrow on the left of the label */content: "▸";float: left;margin-right: 0.25em;color: var(--sklearn-color-icon);
}#sk-container-id-1 label.sk-toggleable__label-arrow:hover:before {color: var(--sklearn-color-text);
}/* Toggleable content - dropdown */#sk-container-id-1 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;/* unfitted */background-color: var(--sklearn-color-unfitted-level-0);
}#sk-container-id-1 div.sk-toggleable__content.fitted {/* fitted */background-color: var(--sklearn-color-fitted-level-0);
}#sk-container-id-1 div.sk-toggleable__content pre {margin: 0.2em;border-radius: 0.25em;color: var(--sklearn-color-text);/* unfitted */background-color: var(--sklearn-color-unfitted-level-0);
}#sk-container-id-1 div.sk-toggleable__content.fitted pre {/* unfitted */background-color: var(--sklearn-color-fitted-level-0);
}#sk-container-id-1 input.sk-toggleable__control:checked~div.sk-toggleable__content {/* Expand drop-down */max-height: 200px;max-width: 100%;overflow: auto;
}#sk-container-id-1 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";
}/* Pipeline/ColumnTransformer-specific style */#sk-container-id-1 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {color: var(--sklearn-color-text);background-color: var(--sklearn-color-unfitted-level-2);
}#sk-container-id-1 div.sk-label.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: var(--sklearn-color-fitted-level-2);
}/* Estimator-specific style *//* Colorize estimator box */
#sk-container-id-1 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {/* unfitted */background-color: var(--sklearn-color-unfitted-level-2);
}#sk-container-id-1 div.sk-estimator.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {/* fitted */background-color: var(--sklearn-color-fitted-level-2);
}#sk-container-id-1 div.sk-label label.sk-toggleable__label,
#sk-container-id-1 div.sk-label label {/* The background is the default theme color */color: var(--sklearn-color-text-on-default-background);
}/* On hover, darken the color of the background */
#sk-container-id-1 div.sk-label:hover label.sk-toggleable__label {color: var(--sklearn-color-text);background-color: var(--sklearn-color-unfitted-level-2);
}/* Label box, darken color on hover, fitted */
#sk-container-id-1 div.sk-label.fitted:hover label.sk-toggleable__label.fitted {color: var(--sklearn-color-text);background-color: var(--sklearn-color-fitted-level-2);
}/* Estimator label */#sk-container-id-1 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;
}#sk-container-id-1 div.sk-label-container {text-align: center;
}/* Estimator-specific */
#sk-container-id-1 div.sk-estimator {font-family: monospace;border: 1px dotted var(--sklearn-color-border-box);border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;/* unfitted */background-color: var(--sklearn-color-unfitted-level-0);
}#sk-container-id-1 div.sk-estimator.fitted {/* fitted */background-color: var(--sklearn-color-fitted-level-0);
}/* on hover */
#sk-container-id-1 div.sk-estimator:hover {/* unfitted */background-color: var(--sklearn-color-unfitted-level-2);
}#sk-container-id-1 div.sk-estimator.fitted:hover {/* fitted */background-color: var(--sklearn-color-fitted-level-2);
}/* Specification for estimator info (e.g. "i" and "?") *//* Common style for "i" and "?" */.sk-estimator-doc-link,
a:link.sk-estimator-doc-link,
a:visited.sk-estimator-doc-link {float: right;font-size: smaller;line-height: 1em;font-family: monospace;background-color: var(--sklearn-color-background);border-radius: 1em;height: 1em;width: 1em;text-decoration: none !important;margin-left: 0.5em;text-align: center;/* unfitted */border: var(--sklearn-color-unfitted-level-1) 1pt solid;color: var(--sklearn-color-unfitted-level-1);
}.sk-estimator-doc-link.fitted,
a:link.sk-estimator-doc-link.fitted,
a:visited.sk-estimator-doc-link.fitted {/* fitted */border: var(--sklearn-color-fitted-level-1) 1pt solid;color: var(--sklearn-color-fitted-level-1);
}/* On hover */
div.sk-estimator:hover .sk-estimator-doc-link:hover,
.sk-estimator-doc-link:hover,
div.sk-label-container:hover .sk-estimator-doc-link:hover,
.sk-estimator-doc-link:hover {/* unfitted */background-color: var(--sklearn-color-unfitted-level-3);color: var(--sklearn-color-background);text-decoration: none;
}div.sk-estimator.fitted:hover .sk-estimator-doc-link.fitted:hover,
.sk-estimator-doc-link.fitted:hover,
div.sk-label-container:hover .sk-estimator-doc-link.fitted:hover,
.sk-estimator-doc-link.fitted:hover {/* fitted */background-color: var(--sklearn-color-fitted-level-3);color: var(--sklearn-color-background);text-decoration: none;
}/* Span, style for the box shown on hovering the info icon */
.sk-estimator-doc-link span {display: none;z-index: 9999;position: relative;font-weight: normal;right: .2ex;padding: .5ex;margin: .5ex;width: min-content;min-width: 20ex;max-width: 50ex;color: var(--sklearn-color-text);box-shadow: 2pt 2pt 4pt #999;/* unfitted */background: var(--sklearn-color-unfitted-level-0);border: .5pt solid var(--sklearn-color-unfitted-level-3);
}.sk-estimator-doc-link.fitted span {/* fitted */background: var(--sklearn-color-fitted-level-0);border: var(--sklearn-color-fitted-level-3);
}.sk-estimator-doc-link:hover span {display: block;
}/* "?"-specific style due to the `<a>` HTML tag */#sk-container-id-1 a.estimator_doc_link {float: right;font-size: 1rem;line-height: 1em;font-family: monospace;background-color: var(--sklearn-color-background);border-radius: 1rem;height: 1rem;width: 1rem;text-decoration: none;/* unfitted */color: var(--sklearn-color-unfitted-level-1);border: var(--sklearn-color-unfitted-level-1) 1pt solid;
}#sk-container-id-1 a.estimator_doc_link.fitted {/* fitted */border: var(--sklearn-color-fitted-level-1) 1pt solid;color: var(--sklearn-color-fitted-level-1);
}/* On hover */
#sk-container-id-1 a.estimator_doc_link:hover {/* unfitted */background-color: var(--sklearn-color-unfitted-level-3);color: var(--sklearn-color-background);text-decoration: none;
}#sk-container-id-1 a.estimator_doc_link.fitted:hover {/* fitted */background-color: var(--sklearn-color-fitted-level-3);
}
</style><div id="sk-container-id-1" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[(&#x27;columntransformer&#x27;,ColumnTransformer(transformers=[(&#x27;pipeline-1&#x27;,Pipeline(steps=[(&#x27;simpleimputer&#x27;,SimpleImputer()),(&#x27;standardscaler&#x27;,StandardScaler())]),[&#x27;Course_Avg_Roll_1y&#x27;,&#x27;Course_Min_Last_3y&#x27;,&#x27;Course_Max_Last_3y&#x27;,&#x27;Course_Std_Last_3y&#x27;]),(&#x27;pipeline-2&#x27;,Pipeline(steps=[(&#x27;simpleimputer&#x27;,SimpleImputer(strategy=&#x27;most_frequent&#x27;)),(&#x27;on...OrdinalEncoder(handle_unknown=&#x27;use_encoded_value&#x27;,unknown_value=-1))]),[&#x27;CourseLevel&#x27;,&#x27;Years_Since_Start&#x27;,&#x27;Prof_Courses_Taught&#x27;,&#x27;Year&#x27;]),(&#x27;drop&#x27;, &#x27;drop&#x27;,[&#x27;Reported&#x27;, &#x27;Section&#x27;,&#x27;Detail&#x27;, &#x27;Median&#x27;,&#x27;Percentile (25)&#x27;,&#x27;Percentile (75)&#x27;, &#x27;High&#x27;,&#x27;Low&#x27;, &#x27;&lt;50&#x27;, &#x27;50-54&#x27;,&#x27;55-59&#x27;, &#x27;60-63&#x27;, &#x27;64-67&#x27;,&#x27;68-71&#x27;, &#x27;72-75&#x27;, &#x27;76-79&#x27;,&#x27;80-84&#x27;, &#x27;85-89&#x27;,&#x27;90-100&#x27;])])),(&#x27;ridge&#x27;, Ridge(alpha=2.091, random_state=42))])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-1" type="checkbox" ><label for="sk-estimator-id-1" class="sk-toggleable__label fitted sk-toggleable__label-arrow"><div><div>Pipeline</div></div><div><a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.6/modules/generated/sklearn.pipeline.Pipeline.html">?<span>Documentation for Pipeline</span></a><span class="sk-estimator-doc-link fitted">i<span>Fitted</span></span></div></label><div class="sk-toggleable__content fitted"><pre>Pipeline(steps=[(&#x27;columntransformer&#x27;,ColumnTransformer(transformers=[(&#x27;pipeline-1&#x27;,Pipeline(steps=[(&#x27;simpleimputer&#x27;,SimpleImputer()),(&#x27;standardscaler&#x27;,StandardScaler())]),[&#x27;Course_Avg_Roll_1y&#x27;,&#x27;Course_Min_Last_3y&#x27;,&#x27;Course_Max_Last_3y&#x27;,&#x27;Course_Std_Last_3y&#x27;]),(&#x27;pipeline-2&#x27;,Pipeline(steps=[(&#x27;simpleimputer&#x27;,SimpleImputer(strategy=&#x27;most_frequent&#x27;)),(&#x27;on...OrdinalEncoder(handle_unknown=&#x27;use_encoded_value&#x27;,unknown_value=-1))]),[&#x27;CourseLevel&#x27;,&#x27;Years_Since_Start&#x27;,&#x27;Prof_Courses_Taught&#x27;,&#x27;Year&#x27;]),(&#x27;drop&#x27;, &#x27;drop&#x27;,[&#x27;Reported&#x27;, &#x27;Section&#x27;,&#x27;Detail&#x27;, &#x27;Median&#x27;,&#x27;Percentile (25)&#x27;,&#x27;Percentile (75)&#x27;, &#x27;High&#x27;,&#x27;Low&#x27;, &#x27;&lt;50&#x27;, &#x27;50-54&#x27;,&#x27;55-59&#x27;, &#x27;60-63&#x27;, &#x27;64-67&#x27;,&#x27;68-71&#x27;, &#x27;72-75&#x27;, &#x27;76-79&#x27;,&#x27;80-84&#x27;, &#x27;85-89&#x27;,&#x27;90-100&#x27;])])),(&#x27;ridge&#x27;, Ridge(alpha=2.091, random_state=42))])</pre></div> </div></div><div class="sk-serial"><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-2" type="checkbox" ><label for="sk-estimator-id-2" class="sk-toggleable__label fitted sk-toggleable__label-arrow"><div><div>columntransformer: ColumnTransformer</div></div><div><a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.6/modules/generated/sklearn.compose.ColumnTransformer.html">?<span>Documentation for columntransformer: ColumnTransformer</span></a></div></label><div class="sk-toggleable__content fitted"><pre>ColumnTransformer(transformers=[(&#x27;pipeline-1&#x27;,Pipeline(steps=[(&#x27;simpleimputer&#x27;,SimpleImputer()),(&#x27;standardscaler&#x27;,StandardScaler())]),[&#x27;Course_Avg_Roll_1y&#x27;, &#x27;Course_Min_Last_3y&#x27;,&#x27;Course_Max_Last_3y&#x27;, &#x27;Course_Std_Last_3y&#x27;]),(&#x27;pipeline-2&#x27;,Pipeline(steps=[(&#x27;simpleimputer&#x27;,SimpleImputer(strategy=&#x27;most_frequent&#x27;)),(&#x27;onehotencoder&#x27;,OneHotEncoder(drop=&#x27;if_b...SimpleImputer(strategy=&#x27;most_frequent&#x27;)),(&#x27;ordinalencoder&#x27;,OrdinalEncoder(handle_unknown=&#x27;use_encoded_value&#x27;,unknown_value=-1))]),[&#x27;CourseLevel&#x27;, &#x27;Years_Since_Start&#x27;,&#x27;Prof_Courses_Taught&#x27;, &#x27;Year&#x27;]),(&#x27;drop&#x27;, &#x27;drop&#x27;,[&#x27;Reported&#x27;, &#x27;Section&#x27;, &#x27;Detail&#x27;, &#x27;Median&#x27;,&#x27;Percentile (25)&#x27;, &#x27;Percentile (75)&#x27;, &#x27;High&#x27;,&#x27;Low&#x27;, &#x27;&lt;50&#x27;, &#x27;50-54&#x27;, &#x27;55-59&#x27;, &#x27;60-63&#x27;,&#x27;64-67&#x27;, &#x27;68-71&#x27;, &#x27;72-75&#x27;, &#x27;76-79&#x27;, &#x27;80-84&#x27;,&#x27;85-89&#x27;, &#x27;90-100&#x27;])])</pre></div> </div></div><div class="sk-parallel"><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-3" type="checkbox" ><label for="sk-estimator-id-3" class="sk-toggleable__label fitted sk-toggleable__label-arrow"><div><div>pipeline-1</div></div></label><div class="sk-toggleable__content fitted"><pre>[&#x27;Course_Avg_Roll_1y&#x27;, &#x27;Course_Min_Last_3y&#x27;, &#x27;Course_Max_Last_3y&#x27;, &#x27;Course_Std_Last_3y&#x27;]</pre></div> </div></div><div class="sk-serial"><div class="sk-item"><div class="sk-serial"><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-4" type="checkbox" ><label for="sk-estimator-id-4" class="sk-toggleable__label fitted sk-toggleable__label-arrow"><div><div>SimpleImputer</div></div><div><a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.6/modules/generated/sklearn.impute.SimpleImputer.html">?<span>Documentation for SimpleImputer</span></a></div></label><div class="sk-toggleable__content fitted"><pre>SimpleImputer()</pre></div> </div></div><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-5" type="checkbox" ><label for="sk-estimator-id-5" class="sk-toggleable__label fitted sk-toggleable__label-arrow"><div><div>StandardScaler</div></div><div><a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.6/modules/generated/sklearn.preprocessing.StandardScaler.html">?<span>Documentation for StandardScaler</span></a></div></label><div class="sk-toggleable__content fitted"><pre>StandardScaler()</pre></div> </div></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-6" type="checkbox" ><label for="sk-estimator-id-6" class="sk-toggleable__label fitted sk-toggleable__label-arrow"><div><div>pipeline-2</div></div></label><div class="sk-toggleable__content fitted"><pre>[&#x27;Campus&#x27;, &#x27;Session&#x27;, &#x27;SubjectCourse&#x27;, &#x27;Professor&#x27;, &#x27;Subject&#x27;]</pre></div> </div></div><div class="sk-serial"><div class="sk-item"><div class="sk-serial"><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-7" type="checkbox" ><label for="sk-estimator-id-7" class="sk-toggleable__label fitted sk-toggleable__label-arrow"><div><div>SimpleImputer</div></div><div><a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.6/modules/generated/sklearn.impute.SimpleImputer.html">?<span>Documentation for SimpleImputer</span></a></div></label><div class="sk-toggleable__content fitted"><pre>SimpleImputer(strategy=&#x27;most_frequent&#x27;)</pre></div> </div></div><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-8" type="checkbox" ><label for="sk-estimator-id-8" class="sk-toggleable__label fitted sk-toggleable__label-arrow"><div><div>OneHotEncoder</div></div><div><a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.6/modules/generated/sklearn.preprocessing.OneHotEncoder.html">?<span>Documentation for OneHotEncoder</span></a></div></label><div class="sk-toggleable__content fitted"><pre>OneHotEncoder(drop=&#x27;if_binary&#x27;, handle_unknown=&#x27;ignore&#x27;)</pre></div> </div></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-9" type="checkbox" ><label for="sk-estimator-id-9" class="sk-toggleable__label fitted sk-toggleable__label-arrow"><div><div>pipeline-3</div></div></label><div class="sk-toggleable__content fitted"><pre>[&#x27;CourseLevel&#x27;, &#x27;Years_Since_Start&#x27;, &#x27;Prof_Courses_Taught&#x27;, &#x27;Year&#x27;]</pre></div> </div></div><div class="sk-serial"><div class="sk-item"><div class="sk-serial"><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-10" type="checkbox" ><label for="sk-estimator-id-10" class="sk-toggleable__label fitted sk-toggleable__label-arrow"><div><div>SimpleImputer</div></div><div><a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.6/modules/generated/sklearn.impute.SimpleImputer.html">?<span>Documentation for SimpleImputer</span></a></div></label><div class="sk-toggleable__content fitted"><pre>SimpleImputer(strategy=&#x27;most_frequent&#x27;)</pre></div> </div></div><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-11" type="checkbox" ><label for="sk-estimator-id-11" class="sk-toggleable__label fitted sk-toggleable__label-arrow"><div><div>OrdinalEncoder</div></div><div><a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.6/modules/generated/sklearn.preprocessing.OrdinalEncoder.html">?<span>Documentation for OrdinalEncoder</span></a></div></label><div class="sk-toggleable__content fitted"><pre>OrdinalEncoder(handle_unknown=&#x27;use_encoded_value&#x27;, unknown_value=-1)</pre></div> </div></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-12" type="checkbox" ><label for="sk-estimator-id-12" class="sk-toggleable__label fitted sk-toggleable__label-arrow"><div><div>drop</div></div></label><div class="sk-toggleable__content fitted"><pre>[&#x27;Reported&#x27;, &#x27;Section&#x27;, &#x27;Detail&#x27;, &#x27;Median&#x27;, &#x27;Percentile (25)&#x27;, &#x27;Percentile (75)&#x27;, &#x27;High&#x27;, &#x27;Low&#x27;, &#x27;&lt;50&#x27;, &#x27;50-54&#x27;, &#x27;55-59&#x27;, &#x27;60-63&#x27;, &#x27;64-67&#x27;, &#x27;68-71&#x27;, &#x27;72-75&#x27;, &#x27;76-79&#x27;, &#x27;80-84&#x27;, &#x27;85-89&#x27;, &#x27;90-100&#x27;]</pre></div> </div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-13" type="checkbox" ><label for="sk-estimator-id-13" class="sk-toggleable__label fitted sk-toggleable__label-arrow"><div><div>drop</div></div></label><div class="sk-toggleable__content fitted"><pre>drop</pre></div> </div></div></div></div></div></div></div><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-14" type="checkbox" ><label for="sk-estimator-id-14" class="sk-toggleable__label fitted sk-toggleable__label-arrow"><div><div>Ridge</div></div><div><a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.6/modules/generated/sklearn.linear_model.Ridge.html">?<span>Documentation for Ridge</span></a></div></label><div class="sk-toggleable__content fitted"><pre>Ridge(alpha=2.091, random_state=42)</pre></div> </div></div></div></div></div></div>

## Evaluation Results

[More Information Needed]

# How to Get Started with the Model

[More Information Needed]

# Model Card Authors

This model card is written by following authors:

[More Information Needed]

# Model Card Contact

You can contact the model card authors through following channels:
[More Information Needed]

# Citation

Below you can find information related to citation.

**BibTeX:**
```
[More Information Needed]
```