File size: 50,230 Bytes
7ecf383 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 |
---
library_name: sklearn
tags:
- sklearn
- skops
- tabular-regression
model_format: pickle
model_file: ubcv_grade_predictor_ridge.joblib
widget:
- structuredData:
Campus:
- UBCV
Course:
- 110
CourseLevel:
- 1
Course_Avg_Roll_1y:
- 73.5864074445
Course_Max_Last_3y:
- 91.0
Course_Min_Last_3y:
- 71.898305085
Course_Std_Last_3y:
- 7.270712022509893
Prev_50-54:
- 1.0
Prev_55-59:
- 5.0
Prev_60-63:
- 11.0
Prev_64-67:
- 12.0
Prev_68-71:
- 14.0
Prev_72-75:
- 15.0
Prev_76-79:
- 11.0
Prev_80-84:
- 31.0
Prev_85-89:
- 23.0
Prev_90-100:
- 23.0
Prev_<50:
- 31.0
Prev_High:
- 97.0
Prev_Low:
- 5.0
Prev_Median:
- .nan
Prev_Percentile (25):
- .nan
Prev_Percentile (75):
- .nan
Prof_Courses_Taught:
- .nan
Prof_Prev_50-54:
- .nan
Prof_Prev_55-59:
- .nan
Prof_Prev_60-63:
- .nan
Prof_Prev_64-67:
- .nan
Prof_Prev_68-71:
- .nan
Prof_Prev_72-75:
- .nan
Prof_Prev_76-79:
- .nan
Prof_Prev_80-84:
- .nan
Prof_Prev_85-89:
- .nan
Prof_Prev_90-100:
- .nan
Prof_Prev_<50:
- .nan
Prof_Prev_High:
- .nan
Prof_Prev_Low:
- .nan
Prof_Prev_Median:
- .nan
Prof_Prev_Percentile (25):
- .nan
Prof_Prev_Percentile (75):
- .nan
Professor:
- ''
Session:
- W
Subject:
- CPSC
SubjectCourse:
- CPSC110
Year:
- 2018
Years_Since_Start:
- 4
---
# Model description
[More Information Needed]
## Intended uses & limitations
[More Information Needed]
## Training Procedure
[More Information Needed]
### Hyperparameters
<details>
<summary> Click to expand </summary>
| Hyperparameter | Value |
|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| memory | |
| steps | [('columntransformer', ColumnTransformer(transformers=[('pipeline-1',<br /> Pipeline(steps=[('simpleimputer',<br /> SimpleImputer()),<br /> ('standardscaler',<br /> StandardScaler())]),<br /> ['Course_Avg_Roll_1y', 'Course_Min_Last_3y',<br /> 'Course_Max_Last_3y', 'Course_Std_Last_3y']),<br /> ('pipeline-2',<br /> Pipeline(steps=[('simpleimputer',<br /> SimpleImputer(strategy='most_frequent')),<br /> ('onehotencoder',<br /> OneHotEncoder(drop='if_b...<br /> SimpleImputer(strategy='most_frequent')),<br /> ('ordinalencoder',<br /> OrdinalEncoder(handle_unknown='use_encoded_value',<br /> unknown_value=-1))]),<br /> ['CourseLevel', 'Years_Since_Start',<br /> 'Prof_Courses_Taught', 'Year']),<br /> ('drop', 'drop',<br /> ['Reported', 'Section', 'Detail', 'Median',<br /> 'Percentile (25)', 'Percentile (75)', 'High',<br /> 'Low', '<50', '50-54', '55-59', '60-63',<br /> '64-67', '68-71', '72-75', '76-79', '80-84',<br /> '85-89', '90-100'])])), ('ridge', Ridge(alpha=2.091, random_state=42))] |
| transform_input | |
| verbose | False |
| columntransformer | ColumnTransformer(transformers=[('pipeline-1',<br /> Pipeline(steps=[('simpleimputer',<br /> SimpleImputer()),<br /> ('standardscaler',<br /> StandardScaler())]),<br /> ['Course_Avg_Roll_1y', 'Course_Min_Last_3y',<br /> 'Course_Max_Last_3y', 'Course_Std_Last_3y']),<br /> ('pipeline-2',<br /> Pipeline(steps=[('simpleimputer',<br /> SimpleImputer(strategy='most_frequent')),<br /> ('onehotencoder',<br /> OneHotEncoder(drop='if_b...<br /> SimpleImputer(strategy='most_frequent')),<br /> ('ordinalencoder',<br /> OrdinalEncoder(handle_unknown='use_encoded_value',<br /> unknown_value=-1))]),<br /> ['CourseLevel', 'Years_Since_Start',<br /> 'Prof_Courses_Taught', 'Year']),<br /> ('drop', 'drop',<br /> ['Reported', 'Section', 'Detail', 'Median',<br /> 'Percentile (25)', 'Percentile (75)', 'High',<br /> 'Low', '<50', '50-54', '55-59', '60-63',<br /> '64-67', '68-71', '72-75', '76-79', '80-84',<br /> '85-89', '90-100'])]) |
| ridge | Ridge(alpha=2.091, random_state=42) |
| columntransformer__force_int_remainder_cols | True |
| columntransformer__n_jobs | |
| columntransformer__remainder | drop |
| columntransformer__sparse_threshold | 0.3 |
| columntransformer__transformer_weights | |
| columntransformer__transformers | [('pipeline-1', Pipeline(steps=[('simpleimputer', SimpleImputer()),<br /> ('standardscaler', StandardScaler())]), ['Course_Avg_Roll_1y', 'Course_Min_Last_3y', 'Course_Max_Last_3y', 'Course_Std_Last_3y']), ('pipeline-2', Pipeline(steps=[('simpleimputer', SimpleImputer(strategy='most_frequent')),<br /> ('onehotencoder',<br /> OneHotEncoder(drop='if_binary', handle_unknown='ignore'))]), ['Campus', 'Session', 'SubjectCourse', 'Professor', 'Subject']), ('pipeline-3', Pipeline(steps=[('simpleimputer', SimpleImputer(strategy='most_frequent')),<br /> ('ordinalencoder',<br /> OrdinalEncoder(handle_unknown='use_encoded_value',<br /> unknown_value=-1))]), ['CourseLevel', 'Years_Since_Start', 'Prof_Courses_Taught', 'Year']), ('drop', 'drop', ['Reported', 'Section', 'Detail', 'Median', 'Percentile (25)', 'Percentile (75)', 'High', 'Low', '<50', '50-54', '55-59', '60-63', '64-67', '68-71', '72-75', '76-79', '80-84', '85-89', '90-100'])] |
| columntransformer__verbose | False |
| columntransformer__verbose_feature_names_out | True |
| columntransformer__pipeline-1 | Pipeline(steps=[('simpleimputer', SimpleImputer()),<br /> ('standardscaler', StandardScaler())]) |
| columntransformer__pipeline-2 | Pipeline(steps=[('simpleimputer', SimpleImputer(strategy='most_frequent')),<br /> ('onehotencoder',<br /> OneHotEncoder(drop='if_binary', handle_unknown='ignore'))]) |
| columntransformer__pipeline-3 | Pipeline(steps=[('simpleimputer', SimpleImputer(strategy='most_frequent')),<br /> ('ordinalencoder',<br /> OrdinalEncoder(handle_unknown='use_encoded_value',<br /> unknown_value=-1))]) |
| columntransformer__drop | drop |
| columntransformer__pipeline-1__memory | |
| columntransformer__pipeline-1__steps | [('simpleimputer', SimpleImputer()), ('standardscaler', StandardScaler())] |
| columntransformer__pipeline-1__transform_input | |
| columntransformer__pipeline-1__verbose | False |
| columntransformer__pipeline-1__simpleimputer | SimpleImputer() |
| columntransformer__pipeline-1__standardscaler | StandardScaler() |
| columntransformer__pipeline-1__simpleimputer__add_indicator | False |
| columntransformer__pipeline-1__simpleimputer__copy | True |
| columntransformer__pipeline-1__simpleimputer__fill_value | |
| columntransformer__pipeline-1__simpleimputer__keep_empty_features | False |
| columntransformer__pipeline-1__simpleimputer__missing_values | nan |
| columntransformer__pipeline-1__simpleimputer__strategy | mean |
| columntransformer__pipeline-1__standardscaler__copy | True |
| columntransformer__pipeline-1__standardscaler__with_mean | True |
| columntransformer__pipeline-1__standardscaler__with_std | True |
| columntransformer__pipeline-2__memory | |
| columntransformer__pipeline-2__steps | [('simpleimputer', SimpleImputer(strategy='most_frequent')), ('onehotencoder', OneHotEncoder(drop='if_binary', handle_unknown='ignore'))] |
| columntransformer__pipeline-2__transform_input | |
| columntransformer__pipeline-2__verbose | False |
| columntransformer__pipeline-2__simpleimputer | SimpleImputer(strategy='most_frequent') |
| columntransformer__pipeline-2__onehotencoder | OneHotEncoder(drop='if_binary', handle_unknown='ignore') |
| columntransformer__pipeline-2__simpleimputer__add_indicator | False |
| columntransformer__pipeline-2__simpleimputer__copy | True |
| columntransformer__pipeline-2__simpleimputer__fill_value | |
| columntransformer__pipeline-2__simpleimputer__keep_empty_features | False |
| columntransformer__pipeline-2__simpleimputer__missing_values | nan |
| columntransformer__pipeline-2__simpleimputer__strategy | most_frequent |
| columntransformer__pipeline-2__onehotencoder__categories | auto |
| columntransformer__pipeline-2__onehotencoder__drop | if_binary |
| columntransformer__pipeline-2__onehotencoder__dtype | <class 'numpy.float64'> |
| columntransformer__pipeline-2__onehotencoder__feature_name_combiner | concat |
| columntransformer__pipeline-2__onehotencoder__handle_unknown | ignore |
| columntransformer__pipeline-2__onehotencoder__max_categories | |
| columntransformer__pipeline-2__onehotencoder__min_frequency | |
| columntransformer__pipeline-2__onehotencoder__sparse_output | True |
| columntransformer__pipeline-3__memory | |
| columntransformer__pipeline-3__steps | [('simpleimputer', SimpleImputer(strategy='most_frequent')), ('ordinalencoder', OrdinalEncoder(handle_unknown='use_encoded_value', unknown_value=-1))] |
| columntransformer__pipeline-3__transform_input | |
| columntransformer__pipeline-3__verbose | False |
| columntransformer__pipeline-3__simpleimputer | SimpleImputer(strategy='most_frequent') |
| columntransformer__pipeline-3__ordinalencoder | OrdinalEncoder(handle_unknown='use_encoded_value', unknown_value=-1) |
| columntransformer__pipeline-3__simpleimputer__add_indicator | False |
| columntransformer__pipeline-3__simpleimputer__copy | True |
| columntransformer__pipeline-3__simpleimputer__fill_value | |
| columntransformer__pipeline-3__simpleimputer__keep_empty_features | False |
| columntransformer__pipeline-3__simpleimputer__missing_values | nan |
| columntransformer__pipeline-3__simpleimputer__strategy | most_frequent |
| columntransformer__pipeline-3__ordinalencoder__categories | auto |
| columntransformer__pipeline-3__ordinalencoder__dtype | <class 'numpy.float64'> |
| columntransformer__pipeline-3__ordinalencoder__encoded_missing_value | nan |
| columntransformer__pipeline-3__ordinalencoder__handle_unknown | use_encoded_value |
| columntransformer__pipeline-3__ordinalencoder__max_categories | |
| columntransformer__pipeline-3__ordinalencoder__min_frequency | |
| columntransformer__pipeline-3__ordinalencoder__unknown_value | -1 |
| ridge__alpha | 2.091 |
| ridge__copy_X | True |
| ridge__fit_intercept | True |
| ridge__max_iter | |
| ridge__positive | False |
| ridge__random_state | 42 |
| ridge__solver | auto |
| ridge__tol | 0.0001 |
</details>
### Model Plot
<style>#sk-container-id-1 {/* Definition of color scheme common for light and dark mode */--sklearn-color-text: #000;--sklearn-color-text-muted: #666;--sklearn-color-line: gray;/* Definition of color scheme for unfitted estimators */--sklearn-color-unfitted-level-0: #fff5e6;--sklearn-color-unfitted-level-1: #f6e4d2;--sklearn-color-unfitted-level-2: #ffe0b3;--sklearn-color-unfitted-level-3: chocolate;/* Definition of color scheme for fitted estimators */--sklearn-color-fitted-level-0: #f0f8ff;--sklearn-color-fitted-level-1: #d4ebff;--sklearn-color-fitted-level-2: #b3dbfd;--sklearn-color-fitted-level-3: cornflowerblue;/* Specific color for light theme */--sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));--sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, white)));--sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));--sklearn-color-icon: #696969;@media (prefers-color-scheme: dark) {/* Redefinition of color scheme for dark theme */--sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));--sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, #111)));--sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));--sklearn-color-icon: #878787;}
}#sk-container-id-1 {color: var(--sklearn-color-text);
}#sk-container-id-1 pre {padding: 0;
}#sk-container-id-1 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;
}#sk-container-id-1 div.sk-dashed-wrapped {border: 1px dashed var(--sklearn-color-line);margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: var(--sklearn-color-background);
}#sk-container-id-1 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }`but bootstrap.min.css set `[hidden] { display: none !important; }`so we also need the `!important` here to be able to override thedefault hidden behavior on the sphinx rendered scikit-learn.org.See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;
}#sk-container-id-1 div.sk-text-repr-fallback {display: none;
}div.sk-parallel-item,
div.sk-serial,
div.sk-item {/* draw centered vertical line to link estimators */background-image: linear-gradient(var(--sklearn-color-text-on-default-background), var(--sklearn-color-text-on-default-background));background-size: 2px 100%;background-repeat: no-repeat;background-position: center center;
}/* Parallel-specific style estimator block */#sk-container-id-1 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 2px solid var(--sklearn-color-text-on-default-background);flex-grow: 1;
}#sk-container-id-1 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: var(--sklearn-color-background);position: relative;
}#sk-container-id-1 div.sk-parallel-item {display: flex;flex-direction: column;
}#sk-container-id-1 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;
}#sk-container-id-1 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;
}#sk-container-id-1 div.sk-parallel-item:only-child::after {width: 0;
}/* Serial-specific style estimator block */#sk-container-id-1 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: var(--sklearn-color-background);padding-right: 1em;padding-left: 1em;
}/* Toggleable style: style used for estimator/Pipeline/ColumnTransformer box that is
clickable and can be expanded/collapsed.
- Pipeline and ColumnTransformer use this feature and define the default style
- Estimators will overwrite some part of the style using the `sk-estimator` class
*//* Pipeline and ColumnTransformer style (default) */#sk-container-id-1 div.sk-toggleable {/* Default theme specific background. It is overwritten whether we have aspecific estimator or a Pipeline/ColumnTransformer */background-color: var(--sklearn-color-background);
}/* Toggleable label */
#sk-container-id-1 label.sk-toggleable__label {cursor: pointer;display: flex;width: 100%;margin-bottom: 0;padding: 0.5em;box-sizing: border-box;text-align: center;align-items: start;justify-content: space-between;gap: 0.5em;
}#sk-container-id-1 label.sk-toggleable__label .caption {font-size: 0.6rem;font-weight: lighter;color: var(--sklearn-color-text-muted);
}#sk-container-id-1 label.sk-toggleable__label-arrow:before {/* Arrow on the left of the label */content: "▸";float: left;margin-right: 0.25em;color: var(--sklearn-color-icon);
}#sk-container-id-1 label.sk-toggleable__label-arrow:hover:before {color: var(--sklearn-color-text);
}/* Toggleable content - dropdown */#sk-container-id-1 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;/* unfitted */background-color: var(--sklearn-color-unfitted-level-0);
}#sk-container-id-1 div.sk-toggleable__content.fitted {/* fitted */background-color: var(--sklearn-color-fitted-level-0);
}#sk-container-id-1 div.sk-toggleable__content pre {margin: 0.2em;border-radius: 0.25em;color: var(--sklearn-color-text);/* unfitted */background-color: var(--sklearn-color-unfitted-level-0);
}#sk-container-id-1 div.sk-toggleable__content.fitted pre {/* unfitted */background-color: var(--sklearn-color-fitted-level-0);
}#sk-container-id-1 input.sk-toggleable__control:checked~div.sk-toggleable__content {/* Expand drop-down */max-height: 200px;max-width: 100%;overflow: auto;
}#sk-container-id-1 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";
}/* Pipeline/ColumnTransformer-specific style */#sk-container-id-1 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {color: var(--sklearn-color-text);background-color: var(--sklearn-color-unfitted-level-2);
}#sk-container-id-1 div.sk-label.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: var(--sklearn-color-fitted-level-2);
}/* Estimator-specific style *//* Colorize estimator box */
#sk-container-id-1 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {/* unfitted */background-color: var(--sklearn-color-unfitted-level-2);
}#sk-container-id-1 div.sk-estimator.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {/* fitted */background-color: var(--sklearn-color-fitted-level-2);
}#sk-container-id-1 div.sk-label label.sk-toggleable__label,
#sk-container-id-1 div.sk-label label {/* The background is the default theme color */color: var(--sklearn-color-text-on-default-background);
}/* On hover, darken the color of the background */
#sk-container-id-1 div.sk-label:hover label.sk-toggleable__label {color: var(--sklearn-color-text);background-color: var(--sklearn-color-unfitted-level-2);
}/* Label box, darken color on hover, fitted */
#sk-container-id-1 div.sk-label.fitted:hover label.sk-toggleable__label.fitted {color: var(--sklearn-color-text);background-color: var(--sklearn-color-fitted-level-2);
}/* Estimator label */#sk-container-id-1 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;
}#sk-container-id-1 div.sk-label-container {text-align: center;
}/* Estimator-specific */
#sk-container-id-1 div.sk-estimator {font-family: monospace;border: 1px dotted var(--sklearn-color-border-box);border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;/* unfitted */background-color: var(--sklearn-color-unfitted-level-0);
}#sk-container-id-1 div.sk-estimator.fitted {/* fitted */background-color: var(--sklearn-color-fitted-level-0);
}/* on hover */
#sk-container-id-1 div.sk-estimator:hover {/* unfitted */background-color: var(--sklearn-color-unfitted-level-2);
}#sk-container-id-1 div.sk-estimator.fitted:hover {/* fitted */background-color: var(--sklearn-color-fitted-level-2);
}/* Specification for estimator info (e.g. "i" and "?") *//* Common style for "i" and "?" */.sk-estimator-doc-link,
a:link.sk-estimator-doc-link,
a:visited.sk-estimator-doc-link {float: right;font-size: smaller;line-height: 1em;font-family: monospace;background-color: var(--sklearn-color-background);border-radius: 1em;height: 1em;width: 1em;text-decoration: none !important;margin-left: 0.5em;text-align: center;/* unfitted */border: var(--sklearn-color-unfitted-level-1) 1pt solid;color: var(--sklearn-color-unfitted-level-1);
}.sk-estimator-doc-link.fitted,
a:link.sk-estimator-doc-link.fitted,
a:visited.sk-estimator-doc-link.fitted {/* fitted */border: var(--sklearn-color-fitted-level-1) 1pt solid;color: var(--sklearn-color-fitted-level-1);
}/* On hover */
div.sk-estimator:hover .sk-estimator-doc-link:hover,
.sk-estimator-doc-link:hover,
div.sk-label-container:hover .sk-estimator-doc-link:hover,
.sk-estimator-doc-link:hover {/* unfitted */background-color: var(--sklearn-color-unfitted-level-3);color: var(--sklearn-color-background);text-decoration: none;
}div.sk-estimator.fitted:hover .sk-estimator-doc-link.fitted:hover,
.sk-estimator-doc-link.fitted:hover,
div.sk-label-container:hover .sk-estimator-doc-link.fitted:hover,
.sk-estimator-doc-link.fitted:hover {/* fitted */background-color: var(--sklearn-color-fitted-level-3);color: var(--sklearn-color-background);text-decoration: none;
}/* Span, style for the box shown on hovering the info icon */
.sk-estimator-doc-link span {display: none;z-index: 9999;position: relative;font-weight: normal;right: .2ex;padding: .5ex;margin: .5ex;width: min-content;min-width: 20ex;max-width: 50ex;color: var(--sklearn-color-text);box-shadow: 2pt 2pt 4pt #999;/* unfitted */background: var(--sklearn-color-unfitted-level-0);border: .5pt solid var(--sklearn-color-unfitted-level-3);
}.sk-estimator-doc-link.fitted span {/* fitted */background: var(--sklearn-color-fitted-level-0);border: var(--sklearn-color-fitted-level-3);
}.sk-estimator-doc-link:hover span {display: block;
}/* "?"-specific style due to the `<a>` HTML tag */#sk-container-id-1 a.estimator_doc_link {float: right;font-size: 1rem;line-height: 1em;font-family: monospace;background-color: var(--sklearn-color-background);border-radius: 1rem;height: 1rem;width: 1rem;text-decoration: none;/* unfitted */color: var(--sklearn-color-unfitted-level-1);border: var(--sklearn-color-unfitted-level-1) 1pt solid;
}#sk-container-id-1 a.estimator_doc_link.fitted {/* fitted */border: var(--sklearn-color-fitted-level-1) 1pt solid;color: var(--sklearn-color-fitted-level-1);
}/* On hover */
#sk-container-id-1 a.estimator_doc_link:hover {/* unfitted */background-color: var(--sklearn-color-unfitted-level-3);color: var(--sklearn-color-background);text-decoration: none;
}#sk-container-id-1 a.estimator_doc_link.fitted:hover {/* fitted */background-color: var(--sklearn-color-fitted-level-3);
}
</style><div id="sk-container-id-1" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[('columntransformer',ColumnTransformer(transformers=[('pipeline-1',Pipeline(steps=[('simpleimputer',SimpleImputer()),('standardscaler',StandardScaler())]),['Course_Avg_Roll_1y','Course_Min_Last_3y','Course_Max_Last_3y','Course_Std_Last_3y']),('pipeline-2',Pipeline(steps=[('simpleimputer',SimpleImputer(strategy='most_frequent')),('on...OrdinalEncoder(handle_unknown='use_encoded_value',unknown_value=-1))]),['CourseLevel','Years_Since_Start','Prof_Courses_Taught','Year']),('drop', 'drop',['Reported', 'Section','Detail', 'Median','Percentile (25)','Percentile (75)', 'High','Low', '<50', '50-54','55-59', '60-63', '64-67','68-71', '72-75', '76-79','80-84', '85-89','90-100'])])),('ridge', Ridge(alpha=2.091, random_state=42))])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-1" type="checkbox" ><label for="sk-estimator-id-1" class="sk-toggleable__label fitted sk-toggleable__label-arrow"><div><div>Pipeline</div></div><div><a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.6/modules/generated/sklearn.pipeline.Pipeline.html">?<span>Documentation for Pipeline</span></a><span class="sk-estimator-doc-link fitted">i<span>Fitted</span></span></div></label><div class="sk-toggleable__content fitted"><pre>Pipeline(steps=[('columntransformer',ColumnTransformer(transformers=[('pipeline-1',Pipeline(steps=[('simpleimputer',SimpleImputer()),('standardscaler',StandardScaler())]),['Course_Avg_Roll_1y','Course_Min_Last_3y','Course_Max_Last_3y','Course_Std_Last_3y']),('pipeline-2',Pipeline(steps=[('simpleimputer',SimpleImputer(strategy='most_frequent')),('on...OrdinalEncoder(handle_unknown='use_encoded_value',unknown_value=-1))]),['CourseLevel','Years_Since_Start','Prof_Courses_Taught','Year']),('drop', 'drop',['Reported', 'Section','Detail', 'Median','Percentile (25)','Percentile (75)', 'High','Low', '<50', '50-54','55-59', '60-63', '64-67','68-71', '72-75', '76-79','80-84', '85-89','90-100'])])),('ridge', Ridge(alpha=2.091, random_state=42))])</pre></div> </div></div><div class="sk-serial"><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-2" type="checkbox" ><label for="sk-estimator-id-2" class="sk-toggleable__label fitted sk-toggleable__label-arrow"><div><div>columntransformer: ColumnTransformer</div></div><div><a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.6/modules/generated/sklearn.compose.ColumnTransformer.html">?<span>Documentation for columntransformer: ColumnTransformer</span></a></div></label><div class="sk-toggleable__content fitted"><pre>ColumnTransformer(transformers=[('pipeline-1',Pipeline(steps=[('simpleimputer',SimpleImputer()),('standardscaler',StandardScaler())]),['Course_Avg_Roll_1y', 'Course_Min_Last_3y','Course_Max_Last_3y', 'Course_Std_Last_3y']),('pipeline-2',Pipeline(steps=[('simpleimputer',SimpleImputer(strategy='most_frequent')),('onehotencoder',OneHotEncoder(drop='if_b...SimpleImputer(strategy='most_frequent')),('ordinalencoder',OrdinalEncoder(handle_unknown='use_encoded_value',unknown_value=-1))]),['CourseLevel', 'Years_Since_Start','Prof_Courses_Taught', 'Year']),('drop', 'drop',['Reported', 'Section', 'Detail', 'Median','Percentile (25)', 'Percentile (75)', 'High','Low', '<50', '50-54', '55-59', '60-63','64-67', '68-71', '72-75', '76-79', '80-84','85-89', '90-100'])])</pre></div> </div></div><div class="sk-parallel"><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-3" type="checkbox" ><label for="sk-estimator-id-3" class="sk-toggleable__label fitted sk-toggleable__label-arrow"><div><div>pipeline-1</div></div></label><div class="sk-toggleable__content fitted"><pre>['Course_Avg_Roll_1y', 'Course_Min_Last_3y', 'Course_Max_Last_3y', 'Course_Std_Last_3y']</pre></div> </div></div><div class="sk-serial"><div class="sk-item"><div class="sk-serial"><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-4" type="checkbox" ><label for="sk-estimator-id-4" class="sk-toggleable__label fitted sk-toggleable__label-arrow"><div><div>SimpleImputer</div></div><div><a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.6/modules/generated/sklearn.impute.SimpleImputer.html">?<span>Documentation for SimpleImputer</span></a></div></label><div class="sk-toggleable__content fitted"><pre>SimpleImputer()</pre></div> </div></div><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-5" type="checkbox" ><label for="sk-estimator-id-5" class="sk-toggleable__label fitted sk-toggleable__label-arrow"><div><div>StandardScaler</div></div><div><a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.6/modules/generated/sklearn.preprocessing.StandardScaler.html">?<span>Documentation for StandardScaler</span></a></div></label><div class="sk-toggleable__content fitted"><pre>StandardScaler()</pre></div> </div></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-6" type="checkbox" ><label for="sk-estimator-id-6" class="sk-toggleable__label fitted sk-toggleable__label-arrow"><div><div>pipeline-2</div></div></label><div class="sk-toggleable__content fitted"><pre>['Campus', 'Session', 'SubjectCourse', 'Professor', 'Subject']</pre></div> </div></div><div class="sk-serial"><div class="sk-item"><div class="sk-serial"><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-7" type="checkbox" ><label for="sk-estimator-id-7" class="sk-toggleable__label fitted sk-toggleable__label-arrow"><div><div>SimpleImputer</div></div><div><a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.6/modules/generated/sklearn.impute.SimpleImputer.html">?<span>Documentation for SimpleImputer</span></a></div></label><div class="sk-toggleable__content fitted"><pre>SimpleImputer(strategy='most_frequent')</pre></div> </div></div><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-8" type="checkbox" ><label for="sk-estimator-id-8" class="sk-toggleable__label fitted sk-toggleable__label-arrow"><div><div>OneHotEncoder</div></div><div><a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.6/modules/generated/sklearn.preprocessing.OneHotEncoder.html">?<span>Documentation for OneHotEncoder</span></a></div></label><div class="sk-toggleable__content fitted"><pre>OneHotEncoder(drop='if_binary', handle_unknown='ignore')</pre></div> </div></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-9" type="checkbox" ><label for="sk-estimator-id-9" class="sk-toggleable__label fitted sk-toggleable__label-arrow"><div><div>pipeline-3</div></div></label><div class="sk-toggleable__content fitted"><pre>['CourseLevel', 'Years_Since_Start', 'Prof_Courses_Taught', 'Year']</pre></div> </div></div><div class="sk-serial"><div class="sk-item"><div class="sk-serial"><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-10" type="checkbox" ><label for="sk-estimator-id-10" class="sk-toggleable__label fitted sk-toggleable__label-arrow"><div><div>SimpleImputer</div></div><div><a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.6/modules/generated/sklearn.impute.SimpleImputer.html">?<span>Documentation for SimpleImputer</span></a></div></label><div class="sk-toggleable__content fitted"><pre>SimpleImputer(strategy='most_frequent')</pre></div> </div></div><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-11" type="checkbox" ><label for="sk-estimator-id-11" class="sk-toggleable__label fitted sk-toggleable__label-arrow"><div><div>OrdinalEncoder</div></div><div><a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.6/modules/generated/sklearn.preprocessing.OrdinalEncoder.html">?<span>Documentation for OrdinalEncoder</span></a></div></label><div class="sk-toggleable__content fitted"><pre>OrdinalEncoder(handle_unknown='use_encoded_value', unknown_value=-1)</pre></div> </div></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-12" type="checkbox" ><label for="sk-estimator-id-12" class="sk-toggleable__label fitted sk-toggleable__label-arrow"><div><div>drop</div></div></label><div class="sk-toggleable__content fitted"><pre>['Reported', 'Section', 'Detail', 'Median', 'Percentile (25)', 'Percentile (75)', 'High', 'Low', '<50', '50-54', '55-59', '60-63', '64-67', '68-71', '72-75', '76-79', '80-84', '85-89', '90-100']</pre></div> </div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-13" type="checkbox" ><label for="sk-estimator-id-13" class="sk-toggleable__label fitted sk-toggleable__label-arrow"><div><div>drop</div></div></label><div class="sk-toggleable__content fitted"><pre>drop</pre></div> </div></div></div></div></div></div></div><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-14" type="checkbox" ><label for="sk-estimator-id-14" class="sk-toggleable__label fitted sk-toggleable__label-arrow"><div><div>Ridge</div></div><div><a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.6/modules/generated/sklearn.linear_model.Ridge.html">?<span>Documentation for Ridge</span></a></div></label><div class="sk-toggleable__content fitted"><pre>Ridge(alpha=2.091, random_state=42)</pre></div> </div></div></div></div></div></div>
## Evaluation Results
[More Information Needed]
# How to Get Started with the Model
[More Information Needed]
# Model Card Authors
This model card is written by following authors:
[More Information Needed]
# Model Card Contact
You can contact the model card authors through following channels:
[More Information Needed]
# Citation
Below you can find information related to citation.
**BibTeX:**
```
[More Information Needed]
```
|