Biobert_combo_v1 / README.md
adity12345's picture
End of training
b428379 verified
metadata
library_name: transformers
base_model: dmis-lab/biobert-base-cased-v1.1
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: Biobert_combo_v1
    results: []

Biobert_combo_v1

This model is a fine-tuned version of dmis-lab/biobert-base-cased-v1.1 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4421
  • Accuracy: 0.769
  • Auc: 0.867
  • Precision: 0.745
  • Recall: 0.887
  • F1: 0.81
  • F1-macro: 0.757
  • F1-micro: 0.769
  • F1-weighted: 0.763

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Auc Precision Recall F1 F1-macro F1-micro F1-weighted
0.6198 0.1028 500 0.5619 0.693 0.769 0.676 0.858 0.757 0.671 0.693 0.681
0.5401 0.2057 1000 0.5167 0.717 0.807 0.717 0.81 0.761 0.708 0.717 0.713
0.5141 0.3085 1500 0.4933 0.731 0.827 0.75 0.772 0.761 0.726 0.731 0.73
0.4886 0.4114 2000 0.4942 0.736 0.827 0.727 0.841 0.78 0.726 0.736 0.732
0.4882 0.5142 2500 0.4814 0.743 0.838 0.712 0.901 0.795 0.724 0.743 0.732
0.4734 0.6170 3000 0.4718 0.746 0.843 0.724 0.878 0.794 0.733 0.746 0.739
0.4659 0.7199 3500 0.4767 0.748 0.843 0.733 0.859 0.791 0.737 0.748 0.743
0.4632 0.8227 4000 0.4617 0.755 0.852 0.724 0.901 0.803 0.739 0.755 0.746
0.4602 0.9255 4500 0.4639 0.752 0.852 0.717 0.915 0.804 0.734 0.752 0.742
0.457 1.0284 5000 0.4613 0.752 0.85 0.729 0.881 0.798 0.739 0.752 0.745
0.4468 1.1312 5500 0.4541 0.757 0.855 0.731 0.891 0.803 0.743 0.757 0.75
0.4421 1.2341 6000 0.4591 0.755 0.853 0.727 0.892 0.801 0.74 0.755 0.747
0.4373 1.3369 6500 0.4537 0.759 0.856 0.739 0.874 0.801 0.748 0.759 0.753
0.4402 1.4397 7000 0.4552 0.755 0.855 0.74 0.863 0.797 0.745 0.755 0.751
0.4296 1.5426 7500 0.4545 0.76 0.857 0.742 0.87 0.801 0.749 0.76 0.755
0.4407 1.6454 8000 0.4458 0.762 0.86 0.742 0.877 0.804 0.751 0.762 0.757
0.4225 1.7483 8500 0.4472 0.761 0.86 0.735 0.889 0.805 0.748 0.761 0.754
0.4327 1.8511 9000 0.4485 0.758 0.858 0.741 0.867 0.799 0.747 0.758 0.753
0.4311 1.9539 9500 0.4479 0.76 0.859 0.742 0.869 0.801 0.749 0.76 0.755
0.4288 2.0568 10000 0.4527 0.761 0.859 0.742 0.873 0.802 0.75 0.761 0.756
0.4124 2.1596 10500 0.4477 0.762 0.861 0.736 0.891 0.806 0.749 0.762 0.756
0.4181 2.2624 11000 0.4569 0.759 0.857 0.741 0.87 0.8 0.748 0.759 0.754
0.4178 2.3653 11500 0.4469 0.762 0.861 0.741 0.879 0.804 0.751 0.762 0.757
0.4127 2.4681 12000 0.4448 0.764 0.863 0.742 0.881 0.806 0.753 0.764 0.759
0.419 2.5710 12500 0.4454 0.764 0.864 0.734 0.902 0.809 0.75 0.764 0.757
0.4232 2.6738 13000 0.4394 0.766 0.864 0.747 0.873 0.805 0.756 0.766 0.761
0.4226 2.7766 13500 0.4404 0.766 0.864 0.747 0.873 0.805 0.756 0.766 0.761
0.4196 2.8795 14000 0.4477 0.765 0.862 0.758 0.846 0.8 0.757 0.765 0.762
0.408 2.9823 14500 0.4497 0.763 0.862 0.745 0.871 0.803 0.752 0.763 0.758
0.4054 3.0852 15000 0.4404 0.765 0.865 0.749 0.865 0.803 0.755 0.765 0.76
0.4155 3.1880 15500 0.4466 0.764 0.863 0.74 0.885 0.806 0.752 0.764 0.758
0.4155 3.2908 16000 0.4417 0.765 0.864 0.744 0.879 0.806 0.754 0.765 0.76
0.4104 3.3937 16500 0.4407 0.766 0.866 0.742 0.887 0.808 0.755 0.766 0.761
0.4081 3.4965 17000 0.4406 0.765 0.866 0.753 0.859 0.802 0.756 0.765 0.762
0.4046 3.5993 17500 0.4384 0.768 0.868 0.742 0.891 0.81 0.756 0.768 0.762
0.4065 3.7022 18000 0.4443 0.766 0.866 0.742 0.888 0.808 0.754 0.766 0.76
0.4028 3.8050 18500 0.4438 0.768 0.866 0.746 0.882 0.808 0.757 0.768 0.763
0.4035 3.9079 19000 0.4453 0.766 0.865 0.753 0.862 0.804 0.758 0.766 0.763
0.4003 4.0107 19500 0.4426 0.767 0.865 0.75 0.87 0.806 0.757 0.767 0.763
0.4011 4.1135 20000 0.4423 0.767 0.867 0.741 0.892 0.81 0.755 0.767 0.761
0.3924 4.2164 20500 0.4394 0.768 0.867 0.75 0.874 0.807 0.758 0.768 0.764
0.4043 4.3192 21000 0.4421 0.768 0.867 0.744 0.887 0.809 0.757 0.768 0.762
0.395 4.4220 21500 0.4450 0.767 0.865 0.75 0.87 0.805 0.757 0.767 0.763
0.4072 4.5249 22000 0.4392 0.769 0.867 0.751 0.874 0.808 0.759 0.769 0.765
0.4055 4.6277 22500 0.4439 0.768 0.866 0.745 0.885 0.809 0.757 0.768 0.762
0.3987 4.7306 23000 0.4435 0.768 0.866 0.747 0.881 0.808 0.758 0.768 0.763
0.396 4.8334 23500 0.4430 0.768 0.867 0.745 0.885 0.809 0.757 0.768 0.763
0.4017 4.9362 24000 0.4421 0.769 0.867 0.745 0.887 0.81 0.757 0.769 0.763

Framework versions

  • Transformers 4.53.1
  • Pytorch 2.6.0+cu124
  • Datasets 2.14.4
  • Tokenizers 0.21.2