File size: 8,389 Bytes
b428379
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
---
library_name: transformers
base_model: dmis-lab/biobert-base-cased-v1.1
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: Biobert_combo_v1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Biobert_combo_v1

This model is a fine-tuned version of [dmis-lab/biobert-base-cased-v1.1](https://huggingface.co/dmis-lab/biobert-base-cased-v1.1) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4421
- Accuracy: 0.769
- Auc: 0.867
- Precision: 0.745
- Recall: 0.887
- F1: 0.81
- F1-macro: 0.757
- F1-micro: 0.769
- F1-weighted: 0.763

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step  | Validation Loss | Accuracy | Auc   | Precision | Recall | F1    | F1-macro | F1-micro | F1-weighted |
|:-------------:|:------:|:-----:|:---------------:|:--------:|:-----:|:---------:|:------:|:-----:|:--------:|:--------:|:-----------:|
| 0.6198        | 0.1028 | 500   | 0.5619          | 0.693    | 0.769 | 0.676     | 0.858  | 0.757 | 0.671    | 0.693    | 0.681       |
| 0.5401        | 0.2057 | 1000  | 0.5167          | 0.717    | 0.807 | 0.717     | 0.81   | 0.761 | 0.708    | 0.717    | 0.713       |
| 0.5141        | 0.3085 | 1500  | 0.4933          | 0.731    | 0.827 | 0.75      | 0.772  | 0.761 | 0.726    | 0.731    | 0.73        |
| 0.4886        | 0.4114 | 2000  | 0.4942          | 0.736    | 0.827 | 0.727     | 0.841  | 0.78  | 0.726    | 0.736    | 0.732       |
| 0.4882        | 0.5142 | 2500  | 0.4814          | 0.743    | 0.838 | 0.712     | 0.901  | 0.795 | 0.724    | 0.743    | 0.732       |
| 0.4734        | 0.6170 | 3000  | 0.4718          | 0.746    | 0.843 | 0.724     | 0.878  | 0.794 | 0.733    | 0.746    | 0.739       |
| 0.4659        | 0.7199 | 3500  | 0.4767          | 0.748    | 0.843 | 0.733     | 0.859  | 0.791 | 0.737    | 0.748    | 0.743       |
| 0.4632        | 0.8227 | 4000  | 0.4617          | 0.755    | 0.852 | 0.724     | 0.901  | 0.803 | 0.739    | 0.755    | 0.746       |
| 0.4602        | 0.9255 | 4500  | 0.4639          | 0.752    | 0.852 | 0.717     | 0.915  | 0.804 | 0.734    | 0.752    | 0.742       |
| 0.457         | 1.0284 | 5000  | 0.4613          | 0.752    | 0.85  | 0.729     | 0.881  | 0.798 | 0.739    | 0.752    | 0.745       |
| 0.4468        | 1.1312 | 5500  | 0.4541          | 0.757    | 0.855 | 0.731     | 0.891  | 0.803 | 0.743    | 0.757    | 0.75        |
| 0.4421        | 1.2341 | 6000  | 0.4591          | 0.755    | 0.853 | 0.727     | 0.892  | 0.801 | 0.74     | 0.755    | 0.747       |
| 0.4373        | 1.3369 | 6500  | 0.4537          | 0.759    | 0.856 | 0.739     | 0.874  | 0.801 | 0.748    | 0.759    | 0.753       |
| 0.4402        | 1.4397 | 7000  | 0.4552          | 0.755    | 0.855 | 0.74      | 0.863  | 0.797 | 0.745    | 0.755    | 0.751       |
| 0.4296        | 1.5426 | 7500  | 0.4545          | 0.76     | 0.857 | 0.742     | 0.87   | 0.801 | 0.749    | 0.76     | 0.755       |
| 0.4407        | 1.6454 | 8000  | 0.4458          | 0.762    | 0.86  | 0.742     | 0.877  | 0.804 | 0.751    | 0.762    | 0.757       |
| 0.4225        | 1.7483 | 8500  | 0.4472          | 0.761    | 0.86  | 0.735     | 0.889  | 0.805 | 0.748    | 0.761    | 0.754       |
| 0.4327        | 1.8511 | 9000  | 0.4485          | 0.758    | 0.858 | 0.741     | 0.867  | 0.799 | 0.747    | 0.758    | 0.753       |
| 0.4311        | 1.9539 | 9500  | 0.4479          | 0.76     | 0.859 | 0.742     | 0.869  | 0.801 | 0.749    | 0.76     | 0.755       |
| 0.4288        | 2.0568 | 10000 | 0.4527          | 0.761    | 0.859 | 0.742     | 0.873  | 0.802 | 0.75     | 0.761    | 0.756       |
| 0.4124        | 2.1596 | 10500 | 0.4477          | 0.762    | 0.861 | 0.736     | 0.891  | 0.806 | 0.749    | 0.762    | 0.756       |
| 0.4181        | 2.2624 | 11000 | 0.4569          | 0.759    | 0.857 | 0.741     | 0.87   | 0.8   | 0.748    | 0.759    | 0.754       |
| 0.4178        | 2.3653 | 11500 | 0.4469          | 0.762    | 0.861 | 0.741     | 0.879  | 0.804 | 0.751    | 0.762    | 0.757       |
| 0.4127        | 2.4681 | 12000 | 0.4448          | 0.764    | 0.863 | 0.742     | 0.881  | 0.806 | 0.753    | 0.764    | 0.759       |
| 0.419         | 2.5710 | 12500 | 0.4454          | 0.764    | 0.864 | 0.734     | 0.902  | 0.809 | 0.75     | 0.764    | 0.757       |
| 0.4232        | 2.6738 | 13000 | 0.4394          | 0.766    | 0.864 | 0.747     | 0.873  | 0.805 | 0.756    | 0.766    | 0.761       |
| 0.4226        | 2.7766 | 13500 | 0.4404          | 0.766    | 0.864 | 0.747     | 0.873  | 0.805 | 0.756    | 0.766    | 0.761       |
| 0.4196        | 2.8795 | 14000 | 0.4477          | 0.765    | 0.862 | 0.758     | 0.846  | 0.8   | 0.757    | 0.765    | 0.762       |
| 0.408         | 2.9823 | 14500 | 0.4497          | 0.763    | 0.862 | 0.745     | 0.871  | 0.803 | 0.752    | 0.763    | 0.758       |
| 0.4054        | 3.0852 | 15000 | 0.4404          | 0.765    | 0.865 | 0.749     | 0.865  | 0.803 | 0.755    | 0.765    | 0.76        |
| 0.4155        | 3.1880 | 15500 | 0.4466          | 0.764    | 0.863 | 0.74      | 0.885  | 0.806 | 0.752    | 0.764    | 0.758       |
| 0.4155        | 3.2908 | 16000 | 0.4417          | 0.765    | 0.864 | 0.744     | 0.879  | 0.806 | 0.754    | 0.765    | 0.76        |
| 0.4104        | 3.3937 | 16500 | 0.4407          | 0.766    | 0.866 | 0.742     | 0.887  | 0.808 | 0.755    | 0.766    | 0.761       |
| 0.4081        | 3.4965 | 17000 | 0.4406          | 0.765    | 0.866 | 0.753     | 0.859  | 0.802 | 0.756    | 0.765    | 0.762       |
| 0.4046        | 3.5993 | 17500 | 0.4384          | 0.768    | 0.868 | 0.742     | 0.891  | 0.81  | 0.756    | 0.768    | 0.762       |
| 0.4065        | 3.7022 | 18000 | 0.4443          | 0.766    | 0.866 | 0.742     | 0.888  | 0.808 | 0.754    | 0.766    | 0.76        |
| 0.4028        | 3.8050 | 18500 | 0.4438          | 0.768    | 0.866 | 0.746     | 0.882  | 0.808 | 0.757    | 0.768    | 0.763       |
| 0.4035        | 3.9079 | 19000 | 0.4453          | 0.766    | 0.865 | 0.753     | 0.862  | 0.804 | 0.758    | 0.766    | 0.763       |
| 0.4003        | 4.0107 | 19500 | 0.4426          | 0.767    | 0.865 | 0.75      | 0.87   | 0.806 | 0.757    | 0.767    | 0.763       |
| 0.4011        | 4.1135 | 20000 | 0.4423          | 0.767    | 0.867 | 0.741     | 0.892  | 0.81  | 0.755    | 0.767    | 0.761       |
| 0.3924        | 4.2164 | 20500 | 0.4394          | 0.768    | 0.867 | 0.75      | 0.874  | 0.807 | 0.758    | 0.768    | 0.764       |
| 0.4043        | 4.3192 | 21000 | 0.4421          | 0.768    | 0.867 | 0.744     | 0.887  | 0.809 | 0.757    | 0.768    | 0.762       |
| 0.395         | 4.4220 | 21500 | 0.4450          | 0.767    | 0.865 | 0.75      | 0.87   | 0.805 | 0.757    | 0.767    | 0.763       |
| 0.4072        | 4.5249 | 22000 | 0.4392          | 0.769    | 0.867 | 0.751     | 0.874  | 0.808 | 0.759    | 0.769    | 0.765       |
| 0.4055        | 4.6277 | 22500 | 0.4439          | 0.768    | 0.866 | 0.745     | 0.885  | 0.809 | 0.757    | 0.768    | 0.762       |
| 0.3987        | 4.7306 | 23000 | 0.4435          | 0.768    | 0.866 | 0.747     | 0.881  | 0.808 | 0.758    | 0.768    | 0.763       |
| 0.396         | 4.8334 | 23500 | 0.4430          | 0.768    | 0.867 | 0.745     | 0.885  | 0.809 | 0.757    | 0.768    | 0.763       |
| 0.4017        | 4.9362 | 24000 | 0.4421          | 0.769    | 0.867 | 0.745     | 0.887  | 0.81  | 0.757    | 0.769    | 0.763       |


### Framework versions

- Transformers 4.53.1
- Pytorch 2.6.0+cu124
- Datasets 2.14.4
- Tokenizers 0.21.2