|
--- |
|
license: apache-2.0 |
|
base_model: Helsinki-NLP/opus-mt-id-en |
|
tags: |
|
- generated_from_keras_callback |
|
model-index: |
|
- name: aditnnda/machine_translation_informal2formal |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information Keras had access to. You should |
|
probably proofread and complete it, then remove this comment. --> |
|
|
|
# aditnnda/machine_translation_informal2formal |
|
|
|
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-id-en](https://huggingface.co/Helsinki-NLP/opus-mt-id-en) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Train Loss: 0.0453 |
|
- Validation Loss: 1.1322 |
|
- Epoch: 37 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 6000, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} |
|
- training_precision: float32 |
|
|
|
### Training results |
|
|
|
| Train Loss | Validation Loss | Epoch | |
|
|:----------:|:---------------:|:-----:| |
|
| 3.4298 | 2.4070 | 0 | |
|
| 2.1508 | 1.8031 | 1 | |
|
| 1.6301 | 1.5249 | 2 | |
|
| 1.3013 | 1.3417 | 3 | |
|
| 1.0752 | 1.2465 | 4 | |
|
| 0.9119 | 1.1651 | 5 | |
|
| 0.7778 | 1.1213 | 6 | |
|
| 0.6763 | 1.0813 | 7 | |
|
| 0.5907 | 1.0542 | 8 | |
|
| 0.5162 | 1.0289 | 9 | |
|
| 0.4573 | 1.0265 | 10 | |
|
| 0.4057 | 1.0115 | 11 | |
|
| 0.3645 | 1.0096 | 12 | |
|
| 0.3227 | 1.0037 | 13 | |
|
| 0.2864 | 1.0016 | 14 | |
|
| 0.2598 | 1.0121 | 15 | |
|
| 0.2291 | 1.0079 | 16 | |
|
| 0.2069 | 1.0199 | 17 | |
|
| 0.1876 | 1.0247 | 18 | |
|
| 0.1717 | 1.0199 | 19 | |
|
| 0.1544 | 1.0283 | 20 | |
|
| 0.1393 | 1.0416 | 21 | |
|
| 0.1285 | 1.0370 | 22 | |
|
| 0.1171 | 1.0430 | 23 | |
|
| 0.1069 | 1.0593 | 24 | |
|
| 0.0990 | 1.0670 | 25 | |
|
| 0.0915 | 1.0655 | 26 | |
|
| 0.0827 | 1.0818 | 27 | |
|
| 0.0781 | 1.0903 | 28 | |
|
| 0.0729 | 1.0998 | 29 | |
|
| 0.0678 | 1.0932 | 30 | |
|
| 0.0639 | 1.1051 | 31 | |
|
| 0.0592 | 1.1125 | 32 | |
|
| 0.0556 | 1.1240 | 33 | |
|
| 0.0509 | 1.1177 | 34 | |
|
| 0.0512 | 1.1355 | 35 | |
|
| 0.0438 | 1.1405 | 36 | |
|
| 0.0453 | 1.1322 | 37 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- TensorFlow 2.14.0 |
|
- Datasets 2.15.0 |
|
- Tokenizers 0.15.0 |
|
|