gacoanReviewer / README.md
aditnnda's picture
Training in progress epoch 5
0eeae5e
|
raw
history blame
2.11 kB
---
license: mit
base_model: indobenchmark/indobert-base-p1
tags:
- generated_from_keras_callback
model-index:
- name: aditnnda/gacoanReviewer
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# aditnnda/gacoanReviewer
This model is a fine-tuned version of [indobenchmark/indobert-base-p1](https://huggingface.co/indobenchmark/indobert-base-p1) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0208
- Validation Loss: 0.2241
- Train Accuracy: 0.9303
- Epoch: 5
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 3550, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Train Accuracy | Epoch |
|:----------:|:---------------:|:--------------:|:-----:|
| 0.2751 | 0.2043 | 0.9107 | 0 |
| 0.1202 | 0.2077 | 0.9177 | 1 |
| 0.0583 | 0.2770 | 0.9079 | 2 |
| 0.0435 | 0.3412 | 0.9066 | 3 |
| 0.0251 | 0.3762 | 0.9079 | 4 |
| 0.0208 | 0.2241 | 0.9303 | 5 |
### Framework versions
- Transformers 4.35.2
- TensorFlow 2.15.0
- Datasets 2.15.0
- Tokenizers 0.15.0