File size: 2,054 Bytes
b8f2c4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43f7e19
 
b8f2c4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43f7e19
 
 
 
 
 
 
 
 
 
b8f2c4b
 
 
 
 
43f7e19
b8f2c4b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
license: cc-by-sa-4.0
base_model: nlpaueb/bert-base-uncased-contracts
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: clause_model_nov14
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# clause_model_nov14

This model is a fine-tuned version of [nlpaueb/bert-base-uncased-contracts](https://huggingface.co/nlpaueb/bert-base-uncased-contracts) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0520
- Accuracy: 0.9917

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 1.5312        | 1.0   | 1179  | 0.8775          | 0.795    |
| 0.6044        | 2.0   | 2358  | 0.3375          | 0.9192   |
| 0.2778        | 3.0   | 3537  | 0.1704          | 0.9625   |
| 0.162         | 4.0   | 4716  | 0.1016          | 0.9792   |
| 0.121         | 5.0   | 5895  | 0.0791          | 0.9842   |
| 0.0748        | 6.0   | 7074  | 0.0596          | 0.9875   |
| 0.0705        | 7.0   | 8253  | 0.0618          | 0.9917   |
| 0.052         | 8.0   | 9432  | 0.0622          | 0.9908   |
| 0.0299        | 9.0   | 10611 | 0.0505          | 0.9917   |
| 0.031         | 10.0  | 11790 | 0.0520          | 0.9917   |


### Framework versions

- Transformers 4.42.0
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.19.1