File size: 2,072 Bytes
23917eb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
base_model: google/paligemma-3b-mix-448
library_name: peft
license: gemma
tags:
- generated_from_trainer
model-index:
- name: resultsroco__captions__google_paligemma-3b-mix-448__fullrun__2911-095336
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# resultsroco__captions__google_paligemma-3b-mix-448__fullrun__2911-095336
This model is a fine-tuned version of [google/paligemma-3b-mix-448](https://huggingface.co/google/paligemma-3b-mix-448) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.6451
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_steps: 2
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:-----:|:---------------:|
| 2.8798 | 0.9998 | 1022 | 2.8440 |
| 2.7474 | 1.9996 | 2044 | 2.7501 |
| 2.6883 | 2.9994 | 3066 | 2.7063 |
| 2.6667 | 3.9993 | 4088 | 2.6809 |
| 2.5908 | 4.9991 | 5110 | 2.6667 |
| 2.6089 | 5.9999 | 6133 | 2.6562 |
| 2.5774 | 6.9997 | 7155 | 2.6467 |
| 2.5092 | 7.9995 | 8177 | 2.6429 |
| 2.5263 | 8.9993 | 9199 | 2.6425 |
| 2.4526 | 9.9982 | 10220 | 2.6451 |
### Framework versions
- PEFT 0.13.0
- Transformers 4.45.1
- Pytorch 2.3.0.post101
- Datasets 2.19.1
- Tokenizers 0.20.0 |