File size: 13,769 Bytes
281f680 |
1 |
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ccae93595a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ccae9359630>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ccae93596c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ccae9359750>", "_build": "<function ActorCriticPolicy._build at 0x7ccae93597e0>", "forward": "<function ActorCriticPolicy.forward at 0x7ccae9359870>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ccae9359900>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ccae9359990>", "_predict": "<function ActorCriticPolicy._predict at 0x7ccae9359a20>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ccae9359ab0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ccae9359b40>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ccae9359bd0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ccae94f3bc0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1713804520455061620, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKBGWz4EFaA/+8H+PkKpvb6v0YU+Q2wdPgAAAAAAAAAAgGw8PeE63bi+nrO71XorOOONmbuRfok3AACAPwAAgD8A2CQ8XOdsujd+pLslQAO3kToRO4W9vToAAIA/AACAP2YDSD3sKai5rQ0fOg3HsLQU0k473oRAuQAAgD8AAIA/mskQvFJgkrnqcbm87VPovOtN4jreywo9AAAAAAAAAAAzFOA8rg2IuhC6L7mVpCS0Ud2eOb6XTDgAAIA/AACAP82wNr1WOo4/Pn6KPRnazr790BW+2DAQPgAAAAAAAAAAgxGgPi4eST9izX+90X5nvobKXD5lUcu9AAAAAAAAAACa0rM94eS6uphG1LyeeKY8YU5mu6a/jz0AAIA/AAAAAADqCjyPsgO6ymqPucm4A7R8NoO72iSpOAAAgD8AAIA/s7zZPWyS0buKSzu9TuyyPJ7wQD0Ej5W9AAAAAAAAgD+zk48+bDo/P8J2Kb6qBJu+c7wYPT9yxb0AAAAAAAAAAKbqqT1cay66QYHAOabsbza3mpQ7s1LguAAAgD8AAAAAAHBDPI8OJroTnq+70U5cOIXzSrtT88w3AACAPwAAgD/m1AI+oPL5PhRPIr4KSq++4L0VveIym7wAAAAAAAAAAADQjTrDHQm68pzwt0EdUrOEqOw6SmcLNwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVMgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGIjuuaF23eMAWyUTegDjAF0lEdAlcosyFfzBnV9lChoBkdAYm8F0xM362gHTegDaAhHQJXoomb9ZRt1fZQoaAZHQGVmIPsiSq5oB03oA2gIR0CV8LUN8VpLdX2UKGgGR0BoBzIxQBPsaAdN6ANoCEdAlfG0ipvP1XV9lChoBkdAYCQwsXizcGgHTegDaAhHQJXz6pDNQj51fZQoaAZHQF9bTnq3VkNoB03oA2gIR0CV9SqREF4cdX2UKGgGR0Bh4Ijlgc94aAdN6ANoCEdAlfalI7Njb3V9lChoBkdAZNt9JBgNPWgHTegDaAhHQJX78hmoR7J1fZQoaAZHQF2V/FBIFvBoB03oA2gIR0CV/M3gUDdQdX2UKGgGR0BdsBwMpgCwaAdN6ANoCEdAlg81QZXMhXV9lChoBkdAYwnXDm8ujGgHTegDaAhHQJYP56rvLHN1fZQoaAZHQGXMiONo8IRoB03oA2gIR0CWEHg1WKdhdX2UKGgGR0BCDxBmf5DaaAdNBwFoCEdAlhCcx0uDjHV9lChoBkdAY9fns9jgAWgHTegDaAhHQJYSQjhUBGR1fZQoaAZHQFEBWqcVgx9oB0uhaAhHQJYZT3yqdYp1fZQoaAZHQGKCnO0LMLZoB03oA2gIR0CWGc6AvtdBdX2UKGgGR0Bg7wF5fMOgaAdN6ANoCEdAlhnQ75mAb3V9lChoBkdAZh7CFbmlqWgHTegDaAhHQJYa2agElmh1fZQoaAZHQGFycAR02cdoB03oA2gIR0CWGyc1O0swdX2UKGgGR0BU5YYixFAnaAdLy2gIR0CWHHn1FpfydX2UKGgGR0BOJa11GLDRaAdL1GgIR0CWNp8BMi8ndX2UKGgGR0BcDZU96kZaaAdN6ANoCEdAljgybUgB93V9lChoBkdAYlHpHI6sAGgHTegDaAhHQJY/ikM1CPZ1fZQoaAZHQGGXQ+dK/VRoB03oA2gIR0CWQIOLiuMddX2UKGgGR0BloUEcKgIyaAdN6ANoCEdAlkKsHWz4UXV9lChoBkdAZTCI1tO2zGgHTegDaAhHQJZD51Ng0CR1fZQoaAZHQFIkQ04zabpoB0vSaAhHQJZD6qfe1rt1fZQoaAZHQGN1HMlkYoBoB03oA2gIR0CWRXwQ176YdX2UKGgGR0BGytO2y9mIaAdLi2gIR0CWR2UeuFHsdX2UKGgGR0BiOAI6bONYaAdN6ANoCEdAlkuV2mpEQXV9lChoBkdAZY1YODrZ8WgHTegDaAhHQJZYn2M85jp1fZQoaAZHQGOAMJ6Y3NtoB03oA2gIR0CWWVCMglnidX2UKGgGR0Bd+OAEt/WlaAdN6ANoCEdAllnbsWweNnV9lChoBkdAY5SBcRlH0GgHTegDaAhHQJZlMxesxPB1fZQoaAZHQGfhgzHjp9toB03oA2gIR0CWZerVe8f3dX2UKGgGR0Bl17ELpiZwaAdN6ANoCEdAlmecTJyQxXV9lChoBkdAYBJZKWcBl2gHTegDaAhHQJZoEe1a4c51fZQoaAZHQGOzpudf9gpoB03oA2gIR0CWaZ83uNPydX2UKGgGR0BATu/UONHZaAdNGwFoCEdAlmuaioKlYXV9lChoBkdAZNF+tr9ETmgHTegDaAhHQJaCetga3ql1fZQoaAZHQGObXj2i+L5oB03oA2gIR0CWjNa2nbZfdX2UKGgGR0BlkSqOtGNJaAdN6ANoCEdAlo9JF9a2W3V9lChoBkdAY/kP7N0NjWgHTegDaAhHQJaQ9b7j1f51fZQoaAZHQGdZZyU9pypoB03oA2gIR0CWkQHQQcxTdX2UKGgGR0BgmiSs8xKyaAdN6ANoCEdAlpMUmD15B3V9lChoBkdAZUD6hQFcIWgHTegDaAhHQJaVgfuCwr11fZQoaAZHQGCvtzjm0VtoB03oA2gIR0CWmhEKVpsXdX2UKGgGR0BMcYDcM3IdaAdL4GgIR0CWnnNwzch1dX2UKGgGR0Bi+I/C66J7aAdN6ANoCEdAlqbDV2A5JnV9lChoBkdAYrlub7TDwmgHTegDaAhHQJan6n3ta6l1fZQoaAZHQFG6/gBLf1poB0vWaAhHQJaqxTvRZ2Z1fZQoaAZHQHCYqMJhOQBoB00XA2gIR0CWq3NWU8msdX2UKGgGR0BdJ/mcOLBLaAdN6ANoCEdAlrB/iPyTZHV9lChoBkdAYAadGRV6vGgHTegDaAhHQJaw9EVnEl51fZQoaAZHQGJMYvWYnfFoB03oA2gIR0CWsfn5BTn8dX2UKGgGR0BBDs5GSZBtaAdL2GgIR0CWshDfm9xqdX2UKGgGR0Bk1XL7oB7vaAdN6ANoCEdAlrJE8ifQKXV9lChoBkdAUgZrZamoBWgHS6poCEdAlrMRScbzb3V9lChoBkdAZzRiiqQzUWgHTegDaAhHQJazfLr5ZbJ1fZQoaAZHQGbegt4A0bdoB03oA2gIR0CWuX2GIsRQdX2UKGgGR0BP5VmapgkUaAdL22gIR0CWz3kwN9YwdX2UKGgGR0Bg1XMlkYoBaAdN6ANoCEdAltTydat9yHV9lChoBkdAYxRvPTodMmgHTegDaAhHQJbW7vAoG6h1fZQoaAZHQGKyLo4dZJVoB03oA2gIR0CW2Aum78NydX2UKGgGR0Bmk7zPKMefaAdN6ANoCEdAltlfLgXMyXV9lChoBkdAZpCt6ol2NmgHTegDaAhHQJbbB3qzJIV1fZQoaAZHQGgB+GO+7DloB03oA2gIR0CW3tCA+Y+jdX2UKGgGR0BnSQWepXIVaAdN6ANoCEdAluw0gW8AaXV9lChoBkdAZ0X9kSVW0mgHTegDaAhHQJbwfk+5e7d1fZQoaAZHQGZJnKW9lEtoB03oA2gIR0CW97+tr9EUdX2UKGgGR0BhbdpdrwfAaAdN6ANoCEdAlvg6zzErG3V9lChoBkdAZrazWPLgXWgHTegDaAhHQJb5Wh37k4p1fZQoaAZHQGdQ6NMoMKFoB03oA2gIR0CW+XRyOq//dX2UKGgGR0BlXf4IrvsraAdN6ANoCEdAlvmuii7Ci3V9lChoBkdAYSQY0l7dBWgHTegDaAhHQJb7DatcOb11fZQoaAZHQFCZCCz1K5FoB0u9aAhHQJcAhrHlwLp1fZQoaAZHQFKKmTTvy9VoB0uuaAhHQJcBSBH09Qp1fZQoaAZHQGCQaw+t8u1oB03oA2gIR0CXAgmMOwxGdX2UKGgGR0BcNpKSPluFaAdN6ANoCEdAlxZAP3BYWHV9lChoBkdAZSq/O+qR2mgHTegDaAhHQJccNuvUz9F1fZQoaAZHQGBkchTwUg1oB03oA2gIR0CXHls+V1OkdX2UKGgGR0BRJyz1K5CoaAdLpGgIR0CXHyi++M6zdX2UKGgGR0Bi7WKIi1RcaAdN6ANoCEdAlx/VD0Dlo3V9lChoBkdAaHUYrJ8v3GgHTegDaAhHQJch0pz90ih1fZQoaAZHQGQI03XI2floB03oA2gIR0CXJAtFrl/6dX2UKGgGR0BnCMOkLx7RaAdN6ANoCEdAlyjuuA7Pp3V9lChoBkdAS8guscQyymgHS9RoCEdAlyw6neizs3V9lChoBkdAJYJ/G2kSEmgHS9poCEdAly0UfLcKxHV9lChoBkdAYOtMEA5q/WgHTegDaAhHQJc3Mao/A0t1fZQoaAZHQGaSyuIRAbBoB03oA2gIR0CXO5Ls8gZCdX2UKGgGR0BhEfP7el9CaAdN6ANoCEdAl0KYI0IkaHV9lChoBkdAZfmy7f51vGgHTegDaAhHQJdEIaHbh3t1fZQoaAZHQGSVuJk5IYpoB03oA2gIR0CXRG+1Bt1qdX2UKGgGR0BQSE/4ZdfLaAdLnGgIR0CXRZ8YQ8OkdX2UKGgGR0BmukExIre7aAdN6ANoCEdAl0ZPhZQpF3V9lChoBkdAQdFRk3CKrWgHS5hoCEdAl0swqAjIJnV9lChoBkdAY2Qi4axX4mgHTegDaAhHQJdMu3b212J1fZQoaAZHQGjLdf1HvttoB03oA2gIR0CXTZP+n62wdX2UKGgGR0BhCa/h2nsLaAdN6ANoCEdAl05ljNIK+nV9lChoBkdATdzSNOuaF2gHS7VoCEdAl1BZV4oqkXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |