|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: bert-base-cased |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- ncbi_disease |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: bert-finetuned-ner |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: ncbi_disease |
|
type: ncbi_disease |
|
config: ncbi_disease |
|
split: validation |
|
args: ncbi_disease |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.7854671280276817 |
|
- name: Recall |
|
type: recall |
|
value: 0.8653113087674714 |
|
- name: F1 |
|
type: f1 |
|
value: 0.8234582829504232 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.98303871529939 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bert-finetuned-ner |
|
|
|
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the ncbi_disease dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0692 |
|
- Precision: 0.7855 |
|
- Recall: 0.8653 |
|
- F1: 0.8235 |
|
- Accuracy: 0.9830 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.1165 | 1.0 | 680 | 0.0630 | 0.7403 | 0.8221 | 0.7790 | 0.9813 | |
|
| 0.0429 | 2.0 | 1360 | 0.0617 | 0.7691 | 0.8463 | 0.8058 | 0.9833 | |
|
| 0.0162 | 3.0 | 2040 | 0.0692 | 0.7855 | 0.8653 | 0.8235 | 0.9830 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.2 |
|
- Pytorch 2.4.0+cu121 |
|
- Datasets 3.0.0 |
|
- Tokenizers 0.19.1 |
|
|