adigo commited on
Commit
288c6e1
1 Parent(s): c2f60f4

Training complete

Browse files
README.md CHANGED
@@ -26,16 +26,16 @@ model-index:
26
  metrics:
27
  - name: Precision
28
  type: precision
29
- value: 0.7791907514450868
30
  - name: Recall
31
  type: recall
32
- value: 0.8564167725540025
33
  - name: F1
34
  type: f1
35
- value: 0.8159806295399515
36
  - name: Accuracy
37
  type: accuracy
38
- value: 0.9823540395867049
39
  ---
40
 
41
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -45,11 +45,11 @@ should probably proofread and complete it, then remove this comment. -->
45
 
46
  This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the ncbi_disease dataset.
47
  It achieves the following results on the evaluation set:
48
- - Loss: 0.0713
49
- - Precision: 0.7792
50
- - Recall: 0.8564
51
- - F1: 0.8160
52
- - Accuracy: 0.9824
53
 
54
  ## Model description
55
 
@@ -80,9 +80,9 @@ The following hyperparameters were used during training:
80
 
81
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
82
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
83
- | 0.1175 | 1.0 | 680 | 0.0609 | 0.7252 | 0.8183 | 0.7690 | 0.9815 |
84
- | 0.0437 | 2.0 | 1360 | 0.0603 | 0.7489 | 0.8450 | 0.7940 | 0.9821 |
85
- | 0.016 | 3.0 | 2040 | 0.0713 | 0.7792 | 0.8564 | 0.8160 | 0.9824 |
86
 
87
 
88
  ### Framework versions
 
26
  metrics:
27
  - name: Precision
28
  type: precision
29
+ value: 0.7854671280276817
30
  - name: Recall
31
  type: recall
32
+ value: 0.8653113087674714
33
  - name: F1
34
  type: f1
35
+ value: 0.8234582829504232
36
  - name: Accuracy
37
  type: accuracy
38
+ value: 0.98303871529939
39
  ---
40
 
41
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
45
 
46
  This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the ncbi_disease dataset.
47
  It achieves the following results on the evaluation set:
48
+ - Loss: 0.0692
49
+ - Precision: 0.7855
50
+ - Recall: 0.8653
51
+ - F1: 0.8235
52
+ - Accuracy: 0.9830
53
 
54
  ## Model description
55
 
 
80
 
81
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
82
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
83
+ | 0.1165 | 1.0 | 680 | 0.0630 | 0.7403 | 0.8221 | 0.7790 | 0.9813 |
84
+ | 0.0429 | 2.0 | 1360 | 0.0617 | 0.7691 | 0.8463 | 0.8058 | 0.9833 |
85
+ | 0.0162 | 3.0 | 2040 | 0.0692 | 0.7855 | 0.8653 | 0.8235 | 0.9830 |
86
 
87
 
88
  ### Framework versions
runs/Sep13_05-18-46_134fc97c76cf/events.out.tfevents.1726204763.134fc97c76cf.594.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:1aec36fec0ceede212dfcb29fc613f9f5bba31d1d5099c8563018174ceff2a58
3
- size 6837
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4b79700492ff1b3cae6c695950abd0f5f9f63d159ebf4c87174dcb3ed081e653
3
+ size 7663