leaderboard-pr-bot's picture
Adding Evaluation Results
3a5fe70 verified
|
raw
history blame
4.19 kB
metadata
license: other
tags:
  - finetune
  - fine-tune
datasets:
  - adamo1139/rawrr_v1
license_name: yi-license
license_link: LICENSE
model-index:
  - name: yi-34b-200k-rawrr-dpo-1
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 65.44
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=adamo1139/yi-34b-200k-rawrr-dpo-1
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 85.69
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=adamo1139/yi-34b-200k-rawrr-dpo-1
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 76.09
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=adamo1139/yi-34b-200k-rawrr-dpo-1
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 54
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=adamo1139/yi-34b-200k-rawrr-dpo-1
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 82.79
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=adamo1139/yi-34b-200k-rawrr-dpo-1
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 61.79
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=adamo1139/yi-34b-200k-rawrr-dpo-1
          name: Open LLM Leaderboard

NEW STRONGER RAWRR FINETUNE COMING SOON!

This model is Yi-34B-200K fine-tuned using DPO on rawrr_v1 dataset using QLoRA at ctx 200, lora_r 4 and lora_alpha 8. I then merged the adapter with base model. This model is akin to raw LLaMa 65B, it's not meant to follow instructions but instead should be useful as base for further fine-tuning.

Rawrr_v1 dataset made it so that this model issue less refusals, especially for benign topics, and is moreso completion focused rather than instruct focused. Base yi-34B-200k suffers from contamination on instruct and refusal datasets, i am attempting to fix that by training base models with DPO on rawrr dataset, making them more raw.

License: yi-license + non-commercial use only

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 70.97
AI2 Reasoning Challenge (25-Shot) 65.44
HellaSwag (10-Shot) 85.69
MMLU (5-Shot) 76.09
TruthfulQA (0-shot) 54.00
Winogrande (5-shot) 82.79
GSM8k (5-shot) 61.79