File size: 5,275 Bytes
48946cf b34166e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import os
import onnx
import shutil
import zipfile
import argparse
def create_triton_config(model_path, config_path, model_name, max_batch_size=0):
# Load the ONNX model
model = onnx.load(model_path)
# Extract input and output information
input_tensors = []
for i in model.graph.input:
shape = [dim.dim_value if dim.dim_value >= 1 else -1 for dim in i.type.tensor_type.shape.dim][1:]
input_tensors.append({"name": i.name, "data_type": "TYPE_FP32", "dims": shape})
output_tensors = []
for o in model.graph.output:
shape = [dim.dim_value if dim.dim_value >= 1 else -1 for dim in o.type.tensor_type.shape.dim]
# Create the Triton configuration
config = {
"name": model_name,
"backend": "onnxruntime",
"max_batch_size": max_batch_size,
"input": input_tensors,
"output": output_tensors,
"instance_group": [{"count": 1, "kind": "KIND_CPU"}],
}
# Save the configuration as a JSON file
with open(config_path, 'w') as f:
f.write("name: \"" + config['name'] + "\"\n")
f.write("backend: \"" + config['backend'] + "\"\n")
f.write("max_batch_size: " + str(config['max_batch_size']) + "\n")
f.write("input [\n")
for input_tensor in config['input']:
f.write(" {\n")
f.write(" name: \"" + input_tensor['name'] + "\"\n")
f.write(" data_type: " + input_tensor['data_type'] + "\n")
f.write(" dims: [ " + ", ".join([str(dim) for dim in input_tensor['dims']]) + " ]\n")
f.write(" }\n")
f.write("]\n")
f.write("output [\n")
for output_tensor in config['output']:
f.write(" {\n")
f.write(" name: \"" + output_tensor['name'] + "\"\n")
f.write(" data_type: " + output_tensor['data_type'] + "\n")
f.write(" dims: [ " + ", ".join([str(dim) for dim in output_tensor['dims']]) + " ]\n")
f.write(" }\n")
f.write("]\n")
f.write("instance_group [\n")
for instance_group in config['instance_group']:
f.write(" {\n")
f.write(" count: " + str(instance_group['count']) + "\n")
f.write(" kind: " + instance_group['kind'] + "\n")
f.write(" }\n")
f.write("]\n")
print(f"The configuration file has been saved to '{config_path}'")
def list_onnx_files(directory):
onnx_files = []
for root, _, files in os.walk(directory):
for file in files:
if file.endswith(".onnx"):
onnx_files.append(file)
return onnx_files
def zip_folder(folder_path, output_path):
# Create a ZipFile object
with zipfile.ZipFile(output_path, 'w', zipfile.ZIP_DEFLATED) as zip_file:
# Walk through the directory tree and add each file to the zip file
for root, dirs, files in os.walk(folder_path):
for file in files:
file_path = os.path.join(root, file)
zip_file.write(file_path, arcname=os.path.relpath(file_path, folder_path))
# Add an empty directory entry for each subdirectory
for dir in dirs:
dir_path = os.path.join(root, dir)
zip_file.write(dir_path, arcname=os.path.relpath(dir_path, folder_path))
print(f"The folder '{folder_path}' has been zipped to '{output_path}'")
"""
python model_packaging.py adaboost_regressor
"""
if __name__ == "__main__":
# Parse command-line arguments
parser = argparse.ArgumentParser(description='Process a directory with ONNX models.')
parser.add_argument('folder_path', type=str, help='Path to the directory with ONNX models.')
args = parser.parse_args()
folder_path = args.folder_path
# Change to the parent directory
os.chdir(folder_path)
filenames = list_onnx_files(folder_path)
version = '1'
print(filenames)
for filename in filenames:
if not filename.startswith("."): # Exclude hidden files
foldername = os.path.splitext(filename)[0] # Get the filename without extension
if not os.path.exists(foldername): # Check if folder doesn't exist
os.makedirs(foldername, exist_ok=True)
folderdir = os.path.join(foldername, version)
os.makedirs(folderdir, exist_ok=True)
shutil.copy(filename, folderdir) # Copy the file to the folder
model_path = os.path.join(folderdir, filename)
config_path = os.path.join(foldername, "config.pbtxt")
create_triton_config(model_path, config_path, foldername, max_batch_size=0)
os.rename(os.path.join(folderdir, filename), os.path.join(folderdir, 'model.onnx')) # Rename the file
print(f"The file '{os.path.join(folderdir, filename)}' has been renamed to '{os.path.join(folderdir, 'model.onnx')}'")
print(f"{foldername} folder created successfully!")
print(f"{filename} copied to {foldername} successfully!")
zip_folder(os.path.join(folder_path, foldername), f"{foldername}.zip")
else:
print(f"{foldername} folder already exists.")
|