File size: 1,926 Bytes
967cac1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
license: mit
base_model: FacebookAI/xlm-roberta-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: reberta
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# reberta

This model is a fine-tuned version of [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3429
- Accuracy: 0.9408

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.2089        | 1.0   | 1250  | 0.1942          | 0.9408   |
| 0.1623        | 2.0   | 2500  | 0.1801          | 0.9428   |
| 0.1364        | 3.0   | 3750  | 0.1934          | 0.9466   |
| 0.1051        | 4.0   | 5000  | 0.2134          | 0.9456   |
| 0.0737        | 5.0   | 6250  | 0.2472          | 0.9446   |
| 0.062         | 6.0   | 7500  | 0.2751          | 0.944    |
| 0.0441        | 7.0   | 8750  | 0.2992          | 0.9422   |
| 0.0342        | 8.0   | 10000 | 0.3116          | 0.9432   |
| 0.026         | 9.0   | 11250 | 0.3360          | 0.943    |
| 0.0179        | 10.0  | 12500 | 0.3429          | 0.9408   |


### Framework versions

- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2