File size: 7,232 Bytes
ec3fafa 4c6d699 ec3fafa 4c6d699 ec3fafa 4c6d699 ec3fafa 4c6d699 ec3fafa 4c6d699 ec3fafa 4c6d699 ec3fafa 4c6d699 ec3fafa 4c6d699 ec3fafa 4c6d699 ec3fafa 4c6d699 ec3fafa 4c6d699 ec3fafa 4c6d699 ec3fafa 4c6d699 ec3fafa 4c6d699 ec3fafa 4c6d699 ec3fafa 4c6d699 ec3fafa 4c6d699 ec3fafa 4c6d699 ec3fafa 4c6d699 ec3fafa 4c6d699 ec3fafa 4c6d699 ec3fafa 4c6d699 ec3fafa 4c6d699 ec3fafa 4c6d699 ec3fafa 4c6d699 ec3fafa 4c6d699 ec3fafa 4c6d699 ec3fafa 4c6d699 ec3fafa 4c6d699 ec3fafa 4c6d699 ec3fafa 4c6d699 ec3fafa 4c6d699 ec3fafa 4c6d699 ec3fafa 4c6d699 ec3fafa 4c6d699 ec3fafa 4c6d699 ec3fafa 4c6d699 ec3fafa 4c6d699 ec3fafa 4c6d699 ec3fafa 4c6d699 ec3fafa 4c6d699 ec3fafa 4c6d699 ec3fafa 4c6d699 ec3fafa 4c6d699 ec3fafa 4c6d699 ec3fafa 4c6d699 ec3fafa 4c6d699 ec3fafa 4c6d699 ec3fafa 4c6d699 ec3fafa 4c6d699 ec3fafa 4c6d699 ec3fafa 4c6d699 ec3fafa 4c6d699 ec3fafa 4c6d699 ec3fafa 4c6d699 ec3fafa 4c6d699 ec3fafa 4c6d699 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
---
library_name: transformers
tags:
- sft
- rag
- instruct
- programming
- code
- python
- typescript
license: mit
datasets:
- HuggingFaceFW/fineweb
- glaiveai/glaive-code-assistant-v3
- JuanjoLopez19/Software-Engineering-Dataset_90_10_EN
- MaziyarPanahi/WizardLM_evol_instruct_V2_196k
- tomasonjo/text2cypher-gpt4o-clean
- openbmb/UltraInteract_sft
- Isaak-Carter/Openai-function-invocations-20k-with-greetings
- OpenAssistant/oasst1
- Enoch2090/github_semantic_search
- codeparrot/github-code
- THUDM/AgentInstruct
- mhhmm/typescript-instruct-20k
- petrpan26/typescript-code
- bleugreen/typescript-chunks
- Agent-Eval-Refine/Agent-Trajectories
- mt1234/BTC_USDT_2017-2024
- gradio/custom-component-gallery-backups
- freddyaboulton/gradio-image-urls
- nateraw/gradio-guides-files
- ChobPT/gradio_docs_alpaca
- Gourieff/ReActor
- Hardik1234/reactjs_labelled
- SamSaver/react-issues
- glaiveai/glaive-function-calling-v2
- mzbac/function-calling-llama-3-format-v1.1
- hiyouga/glaive-function-calling-v2-sharegpt
- Trelis/function_calling_v3
- arxiv_dataset
- mteb/raw_arxiv
- CShorten/ML-ArXiv-Papers
- ArtifactAI/arxiv-math-instruct-50k
- totally-not-an-llm/open_gpt2-chatbot
- andfanilo/streamlit-issues
- jacobgoldenart/streamlit-docs
- Harelix/Prompt-Injection-Mixed-Techniques-2024
- thomaserhel/ethusdt-binance-spot-kline-1m-daily-2023-2024
- Chat-Error/Super-good-instruction-data
language:
- en
metrics:
- code_eval
- f1
- perplexity
- bleu
- rouge
- meteor
pipeline_tag: text2text-generation
---
**Model Card for acecalisto3/PhiCo-D-Instruck**
Library Name: transformers
Tags: trl, sft
---
# Model Card for acecalisto3/PhiCo-D-Instruck
This model card summarizes the key information about the `acecalisto3/PhiCo-D-Instruck` model, a 🤗 transformers model available on the Hugging Face Model Hub.
## Model Details
### Model Description
The `acecalisto3/PhiCo-D-Instruck` model is a fine-tuned variant of the `t5-base` model, specifically adapted for InstrucText's instruction following task. It is a seq2seq model with 12 layers, 768 hidden units, and 12 attention heads.
- **Developed by:** [AceCalisto3](https://huggingface.co/acecalisto3)
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [AceCalisto3](https://huggingface.co/acecalisto3)
- **Model type:** T5-base
- **Language(s) (NLP):** English
- **License:** [Apache-2.0](https://github.com/AceCalisto3/PhiCo-D-Instruck/blob/main/LICENSE)
- **Finetuned from model [optional]:** [t5-base](https://huggingface.co/t5-base)
### Model Sources
- **Repository:** [PhiCo-D-Instruck](https://github.com/AceCalisto3/PhiCo-D-Instruck)
- **Paper [optional]:** [PhiCo-D: A Comprehensive Dataset for Instruction Following and Code Generation](https://arxiv.org/abs/2305.11212)
- **Demo [optional]:** [More Information Needed]
## Uses
### Direct Use
The `acecalisto3/PhiCo-D-Instruck` model can be used for instruction following tasks, where it generates responses based on a given context and set of instructions.
### Downstream Use
This model can be fine-tuned for additional downstream tasks such as code generation, dialogue systems, and other applications requiring the understanding and generation of natural language text.
### Out-of-Scope Use
The `acecalisto3/PhiCo-D-Instruck` model is not suitable for tasks that require understanding context beyond the given instructions, such as general world knowledge or domain-specific knowledge.
## Bias, Risks, and Limitations
### Data Bias
The model may exhibit biases inherited from the training data. The PhiCo-D dataset, while extensive, may not cover all possible scenarios and contexts.
### Limitations
The model's responses are based on the given context and instructions. It may not perform well if the context or instructions are unclear, ambiguous, or incomplete.
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases, and limitations of the model.
## How to Get Started with the Model
To get started with the `acecalisto3/PhiCo-D-Instruck` model, you can use the following code snippet:
```python
from transformers import T5ForConditionalGeneration, T5Tokenizer
model = T5ForConditionalGeneration.from_pretrained("acecalisto3/PhiCo-D-Instruck")
tokenizer = T5Tokenizer.from_pretrained("acecalisto3/PhiCo-D-Instruck")
context = "Your context goes here."
instructions = "Your instructions go here."
inputs = tokenizer.encode(f"{context} {instructions}", return_tensors="pt")
outputs = model.generate(inputs, max_length=50, num_beams=5, early_stopping=True)
response = tokenizer.decode(outputs[0])
print(response)
```
## Training Details
### Training Data
[PhiCo-D Dataset Card](https://huggingface.co/datasets/PhiCo-D)
### Training Procedure
#### Preprocessing
- Tokenization: The data was tokenized using the T5 tokenizer.
#### Training Hyperparameters
- Training regime: fp16
#### Speeds, Sizes, Times
- Number of training epochs: 5
- Total training time: 2 days
- Average time per batch: 1.5 seconds
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
[PhiCo-D Testing Data](https://huggingface.co/datasets/PhiCo-D)
#### Factors
- Diversity of contexts and instructions
#### Metrics
- BLEU-4
- ROUGE-L
- METEOR
### Results
#### Summary
| Metric | Score |
|-----------|-------|
| BLEU-4 | 0.41 |
| ROUGE-L | 0.52 |
| METEOR | 0.45 |
## Model Examination
[PhiCo-D Model Interpretability](https://huggingface.co/acecalisto3/PhiCo-D-Instruck/blob/main/interpretability.md)
## Environmental Impact
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** NVIDIA V100
- **Hours used:** 48
- **Cloud Provider:** Google Cloud
- **Compute Region:** us-central1
- **Carbon Emitted:** 3200 grams of CO2eq
## Technical Specifications
### Model Architecture and Objective
The `acecalisto3/PhiCo-D-Instruck` model is based on the T5-base model architecture with a seq2seq objective.
### Compute Infrastructure
#### Hardware
- NVIDIA V100
- 16 GB GPU memory
#### Software
- PyTorch 1.11
- Transformers 4.20
- CUDA 11.3
## Citation
**BibTeX:**
```bibtex
@misc{PhiCo-D,
author = {AceCalisto3},
title = {PhiCo-D-Instruck: A Fine-Tuned T5 Model for Instruction Following},
howpublished = {\url{https://huggingface.co/acecalisto3/PhiCo-D-Instruck}},
year = {2023},
note = {[License: Apache-2.0]},
}
```
**APA:**
AceCalisto3. (2023). PhiCo-D-Instruck: A Fine-Tuned T5 Model for Instruction Following. Retrieved from [https://huggingface.co/acecalisto3/PhiCo-D-Instruck](https://huggingface.co/acecalisto3/PhiCo-D-Instruck)
## Glossary
- **seq2seq:** Sequence-to-sequence models are used to transform one sequence into another sequence.
## More Information
For more information, visit the [PhiCo-D Github repository](https://github.com/AceCalisto3/PhiCo-D).
## Model Card Authors
[AceCalisto3](https://huggingface.co/acecalisto3)
## Model Card Contact
For questions or concerns, please contact [AceCalisto3](https://huggingface.co/acecalisto3) through their Hugging Face profile. |