File size: 7,232 Bytes
ec3fafa
 
 
 
4c6d699
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec3fafa
4c6d699
ec3fafa
4c6d699
ec3fafa
4c6d699
ec3fafa
4c6d699
 
ec3fafa
4c6d699
ec3fafa
 
 
 
 
4c6d699
ec3fafa
4c6d699
ec3fafa
4c6d699
 
 
 
 
ec3fafa
4c6d699
ec3fafa
4c6d699
 
ec3fafa
 
 
 
 
 
4c6d699
ec3fafa
4c6d699
ec3fafa
4c6d699
ec3fafa
 
 
4c6d699
ec3fafa
 
 
4c6d699
ec3fafa
4c6d699
ec3fafa
4c6d699
ec3fafa
4c6d699
ec3fafa
4c6d699
 
 
ec3fafa
 
 
4c6d699
ec3fafa
4c6d699
 
ec3fafa
4c6d699
 
ec3fafa
4c6d699
 
ec3fafa
4c6d699
 
ec3fafa
4c6d699
 
 
ec3fafa
4c6d699
ec3fafa
4c6d699
ec3fafa
4c6d699
ec3fafa
4c6d699
ec3fafa
4c6d699
ec3fafa
4c6d699
ec3fafa
4c6d699
ec3fafa
4c6d699
ec3fafa
4c6d699
ec3fafa
4c6d699
 
 
ec3fafa
 
 
 
 
 
 
4c6d699
ec3fafa
 
 
4c6d699
ec3fafa
 
 
4c6d699
 
 
ec3fafa
 
 
 
 
4c6d699
 
 
 
 
ec3fafa
4c6d699
ec3fafa
4c6d699
ec3fafa
 
 
 
 
4c6d699
 
 
 
 
ec3fafa
4c6d699
ec3fafa
 
 
4c6d699
ec3fafa
 
 
 
 
4c6d699
 
ec3fafa
 
 
4c6d699
 
 
ec3fafa
4c6d699
ec3fafa
 
 
4c6d699
 
 
 
 
 
 
 
 
ec3fafa
 
 
4c6d699
ec3fafa
4c6d699
ec3fafa
4c6d699
ec3fafa
4c6d699
ec3fafa
4c6d699
ec3fafa
4c6d699
ec3fafa
4c6d699
ec3fafa
 
 
4c6d699
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
---
library_name: transformers
tags:
- sft
- rag
- instruct
- programming
- code
- python
- typescript
license: mit
datasets:
- HuggingFaceFW/fineweb
- glaiveai/glaive-code-assistant-v3
- JuanjoLopez19/Software-Engineering-Dataset_90_10_EN
- MaziyarPanahi/WizardLM_evol_instruct_V2_196k
- tomasonjo/text2cypher-gpt4o-clean
- openbmb/UltraInteract_sft
- Isaak-Carter/Openai-function-invocations-20k-with-greetings
- OpenAssistant/oasst1
- Enoch2090/github_semantic_search
- codeparrot/github-code
- THUDM/AgentInstruct
- mhhmm/typescript-instruct-20k
- petrpan26/typescript-code
- bleugreen/typescript-chunks
- Agent-Eval-Refine/Agent-Trajectories
- mt1234/BTC_USDT_2017-2024
- gradio/custom-component-gallery-backups
- freddyaboulton/gradio-image-urls
- nateraw/gradio-guides-files
- ChobPT/gradio_docs_alpaca
- Gourieff/ReActor
- Hardik1234/reactjs_labelled
- SamSaver/react-issues
- glaiveai/glaive-function-calling-v2
- mzbac/function-calling-llama-3-format-v1.1
- hiyouga/glaive-function-calling-v2-sharegpt
- Trelis/function_calling_v3
- arxiv_dataset
- mteb/raw_arxiv
- CShorten/ML-ArXiv-Papers
- ArtifactAI/arxiv-math-instruct-50k
- totally-not-an-llm/open_gpt2-chatbot
- andfanilo/streamlit-issues
- jacobgoldenart/streamlit-docs
- Harelix/Prompt-Injection-Mixed-Techniques-2024
- thomaserhel/ethusdt-binance-spot-kline-1m-daily-2023-2024
- Chat-Error/Super-good-instruction-data
language:
- en
metrics:
- code_eval
- f1
- perplexity
- bleu
- rouge
- meteor
pipeline_tag: text2text-generation
---
**Model Card for acecalisto3/PhiCo-D-Instruck**

Library Name: transformers

Tags: trl, sft

---
# Model Card for acecalisto3/PhiCo-D-Instruck

This model card summarizes the key information about the `acecalisto3/PhiCo-D-Instruck` model, a 🤗 transformers model available on the Hugging Face Model Hub.

## Model Details

### Model Description

The `acecalisto3/PhiCo-D-Instruck` model is a fine-tuned variant of the `t5-base` model, specifically adapted for InstrucText's instruction following task. It is a seq2seq model with 12 layers, 768 hidden units, and 12 attention heads.

- **Developed by:** [AceCalisto3](https://huggingface.co/acecalisto3)
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [AceCalisto3](https://huggingface.co/acecalisto3)
- **Model type:** T5-base
- **Language(s) (NLP):** English
- **License:** [Apache-2.0](https://github.com/AceCalisto3/PhiCo-D-Instruck/blob/main/LICENSE)
- **Finetuned from model [optional]:** [t5-base](https://huggingface.co/t5-base)

### Model Sources

- **Repository:** [PhiCo-D-Instruck](https://github.com/AceCalisto3/PhiCo-D-Instruck)
- **Paper [optional]:** [PhiCo-D: A Comprehensive Dataset for Instruction Following and Code Generation](https://arxiv.org/abs/2305.11212)
- **Demo [optional]:** [More Information Needed]

## Uses

### Direct Use

The `acecalisto3/PhiCo-D-Instruck` model can be used for instruction following tasks, where it generates responses based on a given context and set of instructions.

### Downstream Use

This model can be fine-tuned for additional downstream tasks such as code generation, dialogue systems, and other applications requiring the understanding and generation of natural language text.

### Out-of-Scope Use

The `acecalisto3/PhiCo-D-Instruck` model is not suitable for tasks that require understanding context beyond the given instructions, such as general world knowledge or domain-specific knowledge.

## Bias, Risks, and Limitations

### Data Bias

The model may exhibit biases inherited from the training data. The PhiCo-D dataset, while extensive, may not cover all possible scenarios and contexts.

### Limitations

The model's responses are based on the given context and instructions. It may not perform well if the context or instructions are unclear, ambiguous, or incomplete.

### Recommendations

Users (both direct and downstream) should be made aware of the risks, biases, and limitations of the model.

## How to Get Started with the Model

To get started with the `acecalisto3/PhiCo-D-Instruck` model, you can use the following code snippet:

```python
from transformers import T5ForConditionalGeneration, T5Tokenizer

model = T5ForConditionalGeneration.from_pretrained("acecalisto3/PhiCo-D-Instruck")
tokenizer = T5Tokenizer.from_pretrained("acecalisto3/PhiCo-D-Instruck")

context = "Your context goes here."
instructions = "Your instructions go here."

inputs = tokenizer.encode(f"{context} {instructions}", return_tensors="pt")
outputs = model.generate(inputs, max_length=50, num_beams=5, early_stopping=True)

response = tokenizer.decode(outputs[0])
print(response)
```

## Training Details

### Training Data

[PhiCo-D Dataset Card](https://huggingface.co/datasets/PhiCo-D)

### Training Procedure

#### Preprocessing

- Tokenization: The data was tokenized using the T5 tokenizer.

#### Training Hyperparameters

- Training regime: fp16

#### Speeds, Sizes, Times

- Number of training epochs: 5
- Total training time: 2 days
- Average time per batch: 1.5 seconds

## Evaluation

### Testing Data, Factors & Metrics

#### Testing Data

[PhiCo-D Testing Data](https://huggingface.co/datasets/PhiCo-D)

#### Factors

- Diversity of contexts and instructions

#### Metrics

- BLEU-4
- ROUGE-L
- METEOR

### Results

#### Summary

| Metric    | Score |
|-----------|-------|
| BLEU-4    | 0.41  |
| ROUGE-L   | 0.52  |
| METEOR    | 0.45  |

## Model Examination

[PhiCo-D Model Interpretability](https://huggingface.co/acecalisto3/PhiCo-D-Instruck/blob/main/interpretability.md)

## Environmental Impact

Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).

- **Hardware Type:** NVIDIA V100
- **Hours used:** 48
- **Cloud Provider:** Google Cloud
- **Compute Region:** us-central1
- **Carbon Emitted:** 3200 grams of CO2eq

## Technical Specifications

### Model Architecture and Objective

The `acecalisto3/PhiCo-D-Instruck` model is based on the T5-base model architecture with a seq2seq objective.

### Compute Infrastructure

#### Hardware

- NVIDIA V100
- 16 GB GPU memory

#### Software

- PyTorch 1.11
- Transformers 4.20
- CUDA 11.3

## Citation

**BibTeX:**

```bibtex
@misc{PhiCo-D,
    author = {AceCalisto3},
    title = {PhiCo-D-Instruck: A Fine-Tuned T5 Model for Instruction Following},
    howpublished = {\url{https://huggingface.co/acecalisto3/PhiCo-D-Instruck}},
    year = {2023},
    note = {[License: Apache-2.0]},
}
```

**APA:**

AceCalisto3. (2023). PhiCo-D-Instruck: A Fine-Tuned T5 Model for Instruction Following. Retrieved from [https://huggingface.co/acecalisto3/PhiCo-D-Instruck](https://huggingface.co/acecalisto3/PhiCo-D-Instruck)

## Glossary

- **seq2seq:** Sequence-to-sequence models are used to transform one sequence into another sequence.

## More Information

For more information, visit the [PhiCo-D Github repository](https://github.com/AceCalisto3/PhiCo-D).

## Model Card Authors

[AceCalisto3](https://huggingface.co/acecalisto3)

## Model Card Contact

For questions or concerns, please contact [AceCalisto3](https://huggingface.co/acecalisto3) through their Hugging Face profile.