File size: 6,983 Bytes
8663160
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
---
license: mit
tags:
- generated_from_trainer
model-index:
- name: rut5-base-absum-tech-support-calls
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# rut5-base-absum-tech-support-calls

This model is a fine-tuned version of [cointegrated/rut5-base-absum](https://huggingface.co/cointegrated/rut5-base-absum) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.8739
- Rouge-1: 0.4059
- Rouge-2: 0.2831
- Rouge-l: 0.3902
- Gen Len: 15.5
- Avg Rouge F: 0.3598

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 3
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- num_epochs: 250

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Rouge-1 | Rouge-2 | Rouge-l | Gen Len | Avg Rouge F |
|:-------------:|:------:|:----:|:---------------:|:-------:|:-------:|:-------:|:-------:|:-----------:|
| 2.7022        | 2.78   | 50   | 2.2970          | 0.0     | 0.0     | 0.0     | 6.875   | 0.0         |
| 2.2932        | 5.56   | 100  | 1.8183          | 0.0     | 0.0     | 0.0     | 10.375  | 0.0         |
| 1.8234        | 8.33   | 150  | 1.4890          | 0.3588  | 0.2205  | 0.3262  | 14.0    | 0.3018      |
| 1.3727        | 11.11  | 200  | 1.3740          | 0.3493  | 0.1653  | 0.3167  | 12.375  | 0.2771      |
| 1.0367        | 13.89  | 250  | 1.3833          | 0.2607  | 0.0984  | 0.2331  | 15.375  | 0.1974      |
| 0.841         | 16.67  | 300  | 1.3516          | 0.3713  | 0.1857  | 0.3594  | 16.0    | 0.3055      |
| 0.7182        | 19.44  | 350  | 1.3607          | 0.3352  | 0.143   | 0.3233  | 16.125  | 0.2672      |
| 0.5102        | 22.22  | 400  | 1.3673          | 0.36    | 0.1597  | 0.3349  | 16.625  | 0.2849      |
| 0.4595        | 25.0   | 450  | 1.3715          | 0.3892  | 0.2153  | 0.3641  | 17.125  | 0.3228      |
| 0.3886        | 27.78  | 500  | 1.4634          | 0.3801  | 0.2274  | 0.3682  | 16.375  | 0.3252      |
| 0.3158        | 30.56  | 550  | 1.5124          | 0.3938  | 0.2319  | 0.3672  | 16.75   | 0.331       |
| 0.2687        | 33.33  | 600  | 1.5868          | 0.3987  | 0.2568  | 0.3848  | 16.5    | 0.3468      |
| 0.2361        | 36.11  | 650  | 1.6460          | 0.375   | 0.2107  | 0.3631  | 17.75   | 0.3163      |
| 0.1991        | 38.89  | 700  | 1.6947          | 0.3605  | 0.2177  | 0.3474  | 16.25   | 0.3085      |
| 0.151         | 41.67  | 750  | 1.8248          | 0.3832  | 0.2274  | 0.3559  | 16.5    | 0.3222      |
| 0.1517        | 44.44  | 800  | 1.7884          | 0.4309  | 0.294   | 0.4184  | 16.875  | 0.3811      |
| 0.1444        | 47.22  | 850  | 1.8519          | 0.3843  | 0.2107  | 0.3711  | 17.125  | 0.322       |
| 0.1106        | 50.0   | 900  | 1.9637          | 0.383   | 0.2107  | 0.3691  | 17.5    | 0.3209      |
| 0.0961        | 52.78  | 950  | 2.0718          | 0.3645  | 0.2177  | 0.3488  | 16.75   | 0.3103      |
| 0.1131        | 55.56  | 1000 | 1.9935          | 0.3602  | 0.2153  | 0.3446  | 16.75   | 0.3067      |
| 0.0996        | 58.33  | 1050 | 2.0616          | 0.4153  | 0.2986  | 0.3996  | 16.0    | 0.3712      |
| 0.0663        | 61.11  | 1100 | 2.1466          | 0.4257  | 0.301   | 0.409   | 14.625  | 0.3786      |
| 0.0789        | 63.89  | 1150 | 2.1657          | 0.4166  | 0.301   | 0.4009  | 16.0    | 0.3728      |
| 0.073         | 66.67  | 1200 | 2.2520          | 0.4131  | 0.301   | 0.3999  | 16.25   | 0.3713      |
| 0.0739        | 69.44  | 1250 | 2.2602          | 0.3582  | 0.2145  | 0.3426  | 17.0    | 0.3051      |
| 0.0799        | 72.22  | 1300 | 2.3278          | 0.369   | 0.2242  | 0.3534  | 16.75   | 0.3156      |
| 0.0546        | 75.0   | 1350 | 2.4021          | 0.369   | 0.2242  | 0.3559  | 16.5    | 0.3164      |
| 0.0674        | 77.78  | 1400 | 2.3493          | 0.4149  | 0.2924  | 0.4017  | 17.25   | 0.3697      |
| 0.0459        | 80.56  | 1450 | 2.3503          | 0.426   | 0.3153  | 0.4104  | 16.125  | 0.3839      |
| 0.0501        | 83.33  | 1500 | 2.3719          | 0.4172  | 0.301   | 0.4016  | 15.375  | 0.3732      |
| 0.0509        | 86.11  | 1550 | 2.4419          | 0.4361  | 0.3188  | 0.4229  | 16.375  | 0.3926      |
| 0.0449        | 88.89  | 1600 | 2.3172          | 0.4514  | 0.3188  | 0.4375  | 16.375  | 0.4026      |
| 0.0408        | 91.67  | 1650 | 2.4438          | 0.4349  | 0.3153  | 0.4217  | 16.25   | 0.3906      |
| 0.0357        | 94.44  | 1700 | 2.5406          | 0.4236  | 0.3153  | 0.4104  | 16.25   | 0.3831      |
| 0.0403        | 97.22  | 1750 | 2.4441          | 0.4111  | 0.3153  | 0.398   | 16.375  | 0.3748      |
| 0.0489        | 100.0  | 1800 | 2.4599          | 0.4154  | 0.3153  | 0.3997  | 16.125  | 0.3768      |
| 0.032         | 102.78 | 1850 | 2.6235          | 0.4515  | 0.3335  | 0.4359  | 15.0    | 0.407       |
| 0.0379        | 105.56 | 1900 | 2.6058          | 0.4515  | 0.3335  | 0.4359  | 15.125  | 0.407       |
| 0.0466        | 108.33 | 1950 | 2.5748          | 0.4154  | 0.3153  | 0.3997  | 16.125  | 0.3768      |
| 0.0317        | 111.11 | 2000 | 2.6638          | 0.4169  | 0.3153  | 0.4013  | 16.125  | 0.3778      |
| 0.0234        | 113.89 | 2050 | 2.7407          | 0.4334  | 0.3153  | 0.4178  | 15.5    | 0.3888      |
| 0.0308        | 116.67 | 2100 | 2.7086          | 0.4201  | 0.3153  | 0.4044  | 16.125  | 0.3799      |
| 0.0305        | 119.44 | 2150 | 2.7068          | 0.4059  | 0.2831  | 0.3902  | 15.5    | 0.3598      |
| 0.0289        | 122.22 | 2200 | 2.8503          | 0.4059  | 0.2831  | 0.3902  | 15.5    | 0.3598      |
| 0.0555        | 125.0  | 2250 | 2.8522          | 0.4059  | 0.2831  | 0.3902  | 15.5    | 0.3598      |
| 0.022         | 127.78 | 2300 | 2.9057          | 0.4059  | 0.2831  | 0.3902  | 15.5    | 0.3598      |
| 0.0369        | 130.56 | 2350 | 2.8736          | 0.4059  | 0.2831  | 0.3902  | 15.5    | 0.3598      |
| 0.0195        | 133.33 | 2400 | 2.7637          | 0.4059  | 0.2831  | 0.3902  | 15.5    | 0.3598      |
| 0.0387        | 136.11 | 2450 | 2.7437          | 0.4059  | 0.2831  | 0.3902  | 15.5    | 0.3598      |
| 0.0298        | 138.89 | 2500 | 2.8818          | 0.391   | 0.2665  | 0.3754  | 16.25   | 0.3443      |
| 0.0265        | 141.67 | 2550 | 2.8340          | 0.3776  | 0.2665  | 0.362   | 16.5    | 0.3353      |
| 0.0182        | 144.44 | 2600 | 2.8739          | 0.4059  | 0.2831  | 0.3902  | 15.5    | 0.3598      |


### Framework versions

- Transformers 4.29.2
- Pytorch 2.0.1+cu118
- Tokenizers 0.13.3