File size: 13,680 Bytes
62e4fbe |
1 |
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7807b84103a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7807b8410430>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7807b84104c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7807b8410550>", "_build": "<function ActorCriticPolicy._build at 0x7807b84105e0>", "forward": "<function ActorCriticPolicy.forward at 0x7807b8410670>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7807b8410700>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7807b8410790>", "_predict": "<function ActorCriticPolicy._predict at 0x7807b8410820>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7807b84108b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7807b8410940>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7807b84109d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7807b83b13c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1722753974861390708, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABN6Tz7ocKQ/d4UBPxVAFb+vP2A+aQadPQAAAAAAAAAAMxUTPs+iG7wOcTm7Rc46ObDziL2z8Hw6AACAPwAAgD/6FwY+rmufunB24ToRJpA1xC0Xuz1JAroAAIA/AACAP81cVTwQqNE+Ny6EvO2RBr9Sh627BhIJvQAAAAAAAAAAM2ksveG85bolnL49IGxGvDAcsLsWZhu9AACAPwAAgD/NWKy8rtefulElLDR3C6ytnLDsOrmAkbMAAIA/AACAPwbYD74STpE8IgCLPtsNZr6kjoM9YIwBPQAAAAAAAAAAjXohPhwgdLwqv2E54lOBuIJI3b3FdP64AACAPwAAgD9AcO09DsWqP+M+MD/VyNO+YfedPb18Yj4AAAAAAAAAAM2jzj3GrbE/zRGYPlLq8L6JIPQ9WHthPQAAAAAAAAAAM2MCvNKksDw+gaU9n5A+vqDQEj3TTCE9AAAAAAAAAAD6RS6+1DynvIWkWjo7/N849u0UPowdm7kAAIA/AACAPxrFBD02u7U/Ls4EP8OTIbrEWyC8kuR3PQAAAAAAAAAAZp4IPek6Dbz6uni8MH8kPaRSorzTMFo7AACAPwAAgD8aRq69e3KjujymNjcve4AyDDFvOg73ULYAAIA/AACAP8aYYz73BL4+iER5vcuR2L5BOjE+/WKPvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV8QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHBIn0kGA0+MAWyUS8GMAXSUR0CYFq4vN/vwdX2UKGgGR0BvVBKJ2t+1aAdLxmgIR0CYF2Y02tMgdX2UKGgGR0Bux4+hXbM5aAdLxmgIR0CYGJHaews5dX2UKGgGR0BzNW3b212JaAdNFQFoCEdAmBjb2lEZznV9lChoBkdAZAFBomG/OGgHTegDaAhHQJgaKGATZg51fZQoaAZHQHMMXfVI7NloB0vlaAhHQJgaUT0xubZ1fZQoaAZHQHCA2mUGFBZoB0vNaAhHQJgaauOjqOd1fZQoaAZHQGeD4lQdjoZoB03oA2gIR0CYG43gDRtxdX2UKGgGR0BydD2FnIyTaAdL32gIR0CYHJX2M85kdX2UKGgGR0BzTJB+nZTRaAdL3GgIR0CYHTYChew+dX2UKGgGR0BkWqZtvXK9aAdN6ANoCEdAmB2u40/GEXV9lChoBkdAcSkciGFi8WgHS89oCEdAmB49ITXarXV9lChoBkdAc6pExIre7GgHS/9oCEdAmB5Ur5IpY3V9lChoBkdAZ4V4C6pYLmgHTegDaAhHQJge6G8Empl1fZQoaAZHQHCMBeLNwBJoB0v6aAhHQJge7S6UaAF1fZQoaAZHQHE672Dg62hoB0vLaAhHQJgfZ4IKMNt1fZQoaAZHQGak1Y6nzhBoB03oA2gIR0CYH5hxYJVsdX2UKGgGR0BwtggEEC/5aAdL3GgIR0CYH6n2qT8pdX2UKGgGR0BxLnY7JW/8aAdLymgIR0CYIGnPmgandX2UKGgGR0By5cwCbMHKaAdL7WgIR0CYIYvQnhKldX2UKGgGR0Bx4oVYZEUkaAdL8WgIR0CYIZPNFBppdX2UKGgGR0BwWt7ngYP5aAdLrGgIR0CYIZt29tdidX2UKGgGR0ByoZH7P6bfaAdL32gIR0CYIh//vOQhdX2UKGgGR0By9sr/bTMJaAdLvGgIR0CYIt3Zwn6VdX2UKGgGR0Bx+WL876pHaAdL4GgIR0CYI3vrnkksdX2UKGgGR0BwKOiJwbVCaAdLwWgIR0CYI5Pbfxc3dX2UKGgGR0ByG7l4keIVaAdLpGgIR0CYI+omXw9adX2UKGgGR0BxVX4nF5v+aAdL4WgIR0CYJOZwXIludX2UKGgGR0BwZ21TisGQaAdLrmgIR0CYJQILw4KhdX2UKGgGR0Bw4fGMn7YTaAdL/2gIR0CYJSf7rLQpdX2UKGgGR0BxYiv4dp7DaAdL8WgIR0CYJdCsOoYOdX2UKGgGR0BxWEsXizcAaAdNBAFoCEdAmCXfvOQhfXV9lChoBkdAcDVoAGSpzmgHS/ZoCEdAmCYt1+y7gHV9lChoBkdAcBs7pV0cO2gHS71oCEdAmCaPnr6ciHV9lChoBkdAbd8NayKNymgHS7xoCEdAmCaPkWAPNHV9lChoBkdAcf7nRb8m8mgHS8xoCEdAmChqBNEgGXV9lChoBkdAdC9Bk7Omi2gHS8loCEdAmCkzfWMCLnV9lChoBkdAc7/MW43FUGgHTRkBaAhHQJgpkhA4XGh1fZQoaAZHQHE4VTFVDKJoB0vFaAhHQJgpvnq3VkN1fZQoaAZHQG8BQUpNKyxoB0vUaAhHQJgpz1ZkkKN1fZQoaAZHQG/dQ/oq0+loB0vEaAhHQJgrVgv114h1fZQoaAZHQHHpN+LFXJZoB0vPaAhHQJgrmITGo751fZQoaAZHQHKRaZc9nsdoB0uhaAhHQJgro8Rtgrp1fZQoaAZHQHFPeY2Kl55oB009AWgIR0CYK8tGd7OWdX2UKGgGR0Bi1DNdJJ5FaAdN6ANoCEdAmCxKOYIBzXV9lChoBkdAcJPNx2jfvWgHS7ZoCEdAmCzTOgQHzHV9lChoBkdAcw62NedCmmgHS/NoCEdAmC0UsnRb8nV9lChoBkdAc2KnM+u/12gHS95oCEdAmC0wAZKnN3V9lChoBkdAcPxCJoCdSWgHS99oCEdAmC4fmHP/rHV9lChoBkdAcad+7UXpGGgHS/xoCEdAmC4zisGPgnV9lChoBkdASNW6NEPUa2gHS7ZoCEdAmC/+hwl0HXV9lChoBkdAcUnEIPbwjWgHS8loCEdAmDBfyTY/V3V9lChoBkdAcKBgiNbTt2gHS7xoCEdAmDBrx7RfGHV9lChoBkdAcsvDXvphW2gHS8xoCEdAmDDobn5i3HV9lChoBkdAcuGEhJRO12gHS7xoCEdAmDGvChvitXV9lChoBkdAcaAIe5nUUmgHS6hoCEdAmDHjpC8e0XV9lChoBkdAbqYt6HCXQmgHS75oCEdAmDInskY4yXV9lChoBkdAcJeQZGax5mgHS6toCEdAmDLcqe9SM3V9lChoBkdAbtAjL0SRKmgHS7doCEdAmDL96cAimnV9lChoBkdAcE1nB+F10WgHS61oCEdAmDML433pOnV9lChoBkdAY2EGB4D9wWgHTegDaAhHQJgzM2l2vB91fZQoaAZHQHIJ/U8V58loB00EAWgIR0CYNFOBlMAWdX2UKGgGR0Bw+S0qpcX4aAdLymgIR0CYNPYnfEXMdX2UKGgGR0BzG59tuUD/aAdNGQFoCEdAmDUAq3EycnV9lChoBkdAcPJt0mtyP2gHS6FoCEdAmDVMPe54GHV9lChoBkdAcxQ/bj94vGgHS/RoCEdAmDYC/wiJO3V9lChoBkdAcWFyIpH7QGgHS6NoCEdAmDZ3C0ngHnV9lChoBkdAcFBEdeY2KmgHS8doCEdAmDa/E87p3XV9lChoBkdAb5SHFglWwWgHS5poCEdAmDcRKpT/AHV9lChoBkdAcB4u0TlDGGgHS8loCEdAmDexMFlkH3V9lChoBkdAcHPp71Iy02gHTQgBaAhHQJg4B7eEZix1fZQoaAZHQHNe71AZ88doB0vfaAhHQJg4HPQfIS11fZQoaAZHQHCt5VCHARFoB0u8aAhHQJg4FdLQHA11fZQoaAZHQHHCf9Hc1wZoB0vgaAhHQJg46yC4Bmx1fZQoaAZHQHISRdld1MdoB0vZaAhHQJg45TrE9+x1fZQoaAZHQHBggOFxn4BoB0vRaAhHQJg6BfeDWbx1fZQoaAZHQHGsC7GvOhVoB0v0aAhHQJg6dYnv2Gt1fZQoaAZHQHJZP9LpRoBoB0vhaAhHQJg6fArQPZt1fZQoaAZHQHGMumFajetoB0vVaAhHQJg6dcX3xnZ1fZQoaAZHQG4e4yfthNNoB0uxaAhHQJg7HlfZ26l1fZQoaAZHQHEzq+evpyJoB0vQaAhHQJg7lutOmBR1fZQoaAZHQHLmJkf9xZNoB00AAWgIR0CYPF9JBgNPdX2UKGgGR0Bx1640/GEPaAdLtmgIR0CYPJr/sE7odX2UKGgGR0BxNTJA+pwTaAdLwWgIR0CYPPschkiEdX2UKGgGR0Bw+wcinpB5aAdLqWgIR0CYPTbbUPQOdX2UKGgGR0Bx8EOWjXWfaAdL1WgIR0CYPX2YfGModX2UKGgGR0BvkkYbbUPQaAdNCgFoCEdAmD3keQuEmXV9lChoBkdAcVyEB8x9HGgHS/RoCEdAmD39K/VRUHV9lChoBkdAcf5mq5sj3WgHS6hoCEdAmD7M3qAz6HV9lChoBkdAcJpaoMrmQ2gHS75oCEdAmD7y44Ia+HV9lChoBkdAcRcyYoiLVGgHS7RoCEdAmD8htpEhJXV9lChoBkdAcqe+LWI42mgHS/1oCEdAmD9mT1TR6XV9lChoBkdAcRK5le4TbmgHS8JoCEdAmD9ze40/GHV9lChoBkdAb5H5k9U0emgHS6toCEdAmD+TbWVeKXV9lChoBkdAbgbd8Aq/d2gHS7hoCEdAmEFXqqwQlXV9lChoBkdAcUWn+hoM8mgHS99oCEdAmEFkuL74z3V9lChoBkdAcengSeyzHGgHS9NoCEdAmEJ3531SO3V9lChoBkdAbqS8jiXIEWgHS8RoCEdAmEKXvphWo3V9lChoBkdAclfPtD2JzmgHTQABaAhHQJhDFtfoicJ1fZQoaAZHQG/xGgzxgApoB0vOaAhHQJhDWIk7fYV1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |