|
--- |
|
license: apache-2.0 |
|
datasets: |
|
- Intel/orca_dpo_pairs |
|
- nvidia/HelpSteer |
|
- jondurbin/truthy-dpo-v0.1 |
|
language: |
|
- en |
|
library_name: transformers |
|
pipeline_tag: text-generation |
|
--- |
|
|
|
### Yi-9B-Forest-DPO |
|
Introducing Yi-9B-Forest-DPO, a LLM fine-tuned with base model 01-ai/Yi-9B, using direct preference optimization. |
|
This model showcases exceptional prowess across a spectrum of natural language processing (NLP) tasks. |
|
|
|
A mixture of the following datasets was used for fine-tuning. |
|
|
|
1. Intel/orca_dpo_pairs |
|
2. nvidia/HelpSteer |
|
3. jondurbin/truthy-dpo-v0.1 |
|
|
|
|
|
💻 Usage |
|
|
|
```python |
|
!pip install -qU transformers bitsandbytes accelerate |
|
|
|
from transformers import AutoTokenizer |
|
import transformers |
|
import torch |
|
|
|
model = "abhishekchohan/Yi-9B-Forest-DPO" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model) |
|
pipeline = transformers.pipeline( |
|
"text-generation", |
|
model=model, |
|
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True}, |
|
) |
|
|
|
messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}] |
|
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) |
|
print(outputs[0]["generated_text"]) |
|
|
|
``` |