File size: 10,214 Bytes
308d252
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
from typing import Union

import PIL.Image
import torch
import torch.nn.functional as F
from torch import nn
from einops import rearrange
import PIL
from torchvision.transforms.v2 import (
    Compose,
    Resize,
    InterpolationMode,
    ToImage,
    ToDtype,
    Normalize,
)
from transformers.utils import is_flash_attn_2_available

try:
    if is_flash_attn_2_available():
        from flash_attn.modules.mha import FlashSelfAttention
    else:
        FlashSelfAttention = None
except ImportError:
    FlashSelfAttention = None


class Attention(nn.Module):

    def __init__(self, dim, num_heads=16, use_flash_attn=False):
        super().__init__()
        assert dim % num_heads == 0, "dim should be divisible by num_heads"

        self.num_heads = num_heads
        self.head_dim = dim // num_heads

        self.qkv = nn.Linear(dim, dim * 3)
        self.proj = nn.Linear(dim, dim)

        if use_flash_attn and FlashSelfAttention is not None:
            self.flash_attn = FlashSelfAttention()
        else:
            self.flash_attn = None

        torch.nn.init.kaiming_normal_(
            self.qkv.weight, mode="fan_in", nonlinearity="relu"
        )
        torch.nn.init.kaiming_normal_(
            self.proj.weight, mode="fan_in", nonlinearity="relu"
        )

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        if self.flash_attn is not None:
            qkv = self.qkv(x)
            qkv = rearrange(
                qkv, "... (three h d) -> ... three h d", three=3, h=self.num_heads
            )
            attn_output = self.flash_attn(qkv)
            output = rearrange(attn_output, "... h d -> ... (h d)")
            output = self.proj(output)
            return output
        else:
            B, N, C = x.shape
            qkv = (
                self.qkv(x)
                .reshape(B, N, 3, self.num_heads, self.head_dim)
                .permute(2, 0, 3, 1, 4)
            )
            q, k, v = qkv.unbind(0)

            x = F.scaled_dot_product_attention(q, k, v)

            x = x.transpose(1, 2).reshape(B, N, C)
            x = self.proj(x)
            return x


class VitBlock(nn.Module):

    def __init__(self, embed_dim, use_flash_attn=False):
        super().__init__()
        self.attn = Attention(embed_dim, use_flash_attn=use_flash_attn)
        self.mlp = MLP(embed_dim, 4304)
        self.norm1 = nn.LayerNorm(embed_dim)
        self.norm2 = nn.LayerNorm(embed_dim)

    def forward(self, x):
        x = x + self.attn(self.norm1(x))
        x = x + self.mlp(self.norm2(x))
        return x


class VisionTransformer(nn.Module):

    def __init__(self, use_flash_attn=False):
        super().__init__()

        embed_len = 729
        embed_dim = 1152

        self.patch_embed = LinearPatchEmbedding()
        self.pos_embed = nn.Parameter(torch.randn(1, embed_len, embed_dim) * 0.02)
        self.blocks = nn.Sequential(
            *[VitBlock(embed_dim, use_flash_attn=use_flash_attn) for _ in range(27)]
        )
        self.norm = nn.LayerNorm(embed_dim)

    def forward(self, x):
        x = self.patch_embed(x)
        x = x + self.pos_embed
        for block in self.blocks:
            x = block(x)
        return self.norm(x)


class EncoderWrapper(nn.Module):

    def __init__(self, use_flash_attn=False):
        super().__init__()
        self.model = nn.ModuleDict({"visual": VisionTransformer(use_flash_attn)})

    def forward(self, x):
        return self.model["visual"](x)


class LinearPatchEmbedding(nn.Module):

    def __init__(self):
        super().__init__()
        self.linear = nn.Linear(588, 1152)

    def forward(self, x):
        b, c, hp1, wp2 = x.shape
        p1, p2 = 14, 14
        h, w = hp1 // p1, wp2 // p2
        x = x.reshape(b, c, h, p1, w, p2)
        x = x.permute(0, 2, 4, 1, 3, 5)
        x = x.reshape(b, h * w, c * p1 * p2)

        return self.linear(x)


class MLP(nn.Module):
    def __init__(
        self,
        in_features: int,
        hidden_features: int = None,
        out_features: int = None,
    ) -> None:
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = nn.GELU(approximate="tanh")
        self.fc2 = nn.Linear(hidden_features, out_features)

        torch.nn.init.kaiming_normal_(
            self.fc1.weight, mode="fan_in", nonlinearity="relu"
        )
        torch.nn.init.kaiming_normal_(
            self.fc2.weight, mode="fan_in", nonlinearity="relu"
        )

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.fc1(x)
        x = self.act(x)
        x = self.fc2(x)
        return x


class VisionProjection(nn.Module):
    def __init__(self):
        super().__init__()

        image_embedding_dim = 1152
        model_dim = 2048
        hidden_dim = model_dim * 4

        self.mlp = MLP(image_embedding_dim * 2, hidden_dim, model_dim)

    @property
    def device(self):
        return self.mlp.fc1.weight.device

    def forward(self, x):
        return self.mlp(x)


def create_patches(image, patch_size=(378, 378)):
    assert image.dim() == 3, "Image must be in CHW format"

    _, height, width = image.shape  # Channels, Height, Width
    patch_height, patch_width = patch_size

    if height == patch_height and width == patch_width:
        return []

    # Iterate over the image and create patches
    patches = []
    for i in range(0, height, patch_height):
        row_patches = []
        for j in range(0, width, patch_width):
            patch = image[:, i : i + patch_height, j : j + patch_width]
            row_patches.append(patch)
        patches.append(torch.stack(row_patches))
    return patches


class VisionEncoder(nn.Module):

    def __init__(self, use_flash_attn=False):
        super().__init__()

        self.encoder = EncoderWrapper(use_flash_attn)
        self.projection = VisionProjection()
        self.supported_sizes = [(378, 378), (378, 756), (756, 378), (756, 756)]

    @property
    def device(self):
        return self.projection.mlp.fc1.weight.device

    @property
    def dtype(self):
        return self.projection.mlp.fc1.weight.dtype

    def preprocess(self, image: PIL.Image.Image):
        width, height = image.size
        max_dim = max(width, height)
        if max_dim < 512:
            im_size = (378, 378)
        else:
            aspect_ratio = width / height
            im_size = min(
                self.supported_sizes,
                key=lambda size: (
                    abs((size[1] / size[0]) - aspect_ratio),
                    abs(size[0] - width) + abs(size[1] - height),
                ),
            )

        return Compose(
            [
                Resize(size=im_size, interpolation=InterpolationMode.BICUBIC),
                ToImage(),
                ToDtype(torch.float32, scale=True),
                Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
            ]
        )(image)

    def forward(
        self, images: Union[PIL.Image.Image, list[PIL.Image.Image], torch.Tensor]
    ) -> torch.Tensor:
        im_list = None
        if isinstance(images, torch.Tensor):
            # Input must have dimensions (B, C, H, W)
            assert (
                len(images.shape) == 4
            ), "Tensor input must have dimensions (B, C, H, W)"
            im_list = list(images)
        elif isinstance(images, PIL.Image.Image):
            im_list = [images]
        elif isinstance(images, list):
            im_list = images
        else:
            raise ValueError(
                "Input must be a PIL image, list of PIL images, or a tensor"
            )

        # Preprocess unless the images are already tensors (indicating that
        # they have already been preprocessed)
        if not isinstance(im_list[0], torch.Tensor):
            im_list = [self.preprocess(im.convert("RGB")) for im in im_list]

        patches = [create_patches(im) for im in im_list]
        flat_patches = [patch for image_patches in patches for patch in image_patches]

        # Images may be variable size, and need to be resized to a common size after
        # creating patches.
        resized_images = [
            F.interpolate(im.unsqueeze(0), size=(378, 378), mode="bilinear")
            for im in im_list
        ]

        combined_images = torch.cat([*resized_images, *flat_patches], dim=0)
        combined_images = combined_images.to(self.device, dtype=self.dtype)

        combined_features = self.encoder(combined_images)

        full_img_features = combined_features[: len(im_list)]
        patch_features = (
            combined_features[len(im_list) :].transpose(1, 2).view(-1, 1152, 27, 27)
        )

        # Reshape patch features back to their original structure
        reshaped_patch_features = []
        patch_idx = 0
        for i, patch_set in enumerate(patches):
            if len(patch_set) == 0:
                reshaped_patch_features.append(
                    full_img_features[i].transpose(0, 1).view(1152, 27, 27)
                )
            else:
                sample_features = []
                for row_patches in patch_set:
                    row_len = len(row_patches)
                    row_features = patch_features[
                        patch_idx : patch_idx + row_len
                    ]  # row_len, T, C
                    row_features = torch.cat(
                        list(row_features), dim=2
                    )  # T, C * row_len
                    patch_idx += row_len
                    sample_features.append(row_features)
                sample_features = torch.cat(sample_features, dim=1)
                sample_features = F.interpolate(
                    sample_features.unsqueeze(0), size=(27, 27), mode="bilinear"
                ).squeeze(0)
                reshaped_patch_features.append(sample_features)
        reshaped_patch_features = (
            torch.stack(reshaped_patch_features).view(-1, 1152, 729).transpose(1, 2)
        )

        final_features = torch.cat([full_img_features, reshaped_patch_features], dim=2)

        return self.projection(final_features)