|
---
|
|
license: apache-2.0
|
|
base_model: openai/whisper-tiny.en
|
|
tags:
|
|
- generated_from_trainer
|
|
metrics:
|
|
- wer
|
|
model-index:
|
|
- name: abbenedekwhisper-tiny.en-finetuning3-D3K
|
|
results: []
|
|
---
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
should probably proofread and complete it, then remove this comment. -->
|
|
|
|
# abbenedekwhisper-tiny.en-finetuning3-D3K
|
|
|
|
This model is a fine-tuned version of [openai/whisper-tiny.en](https://huggingface.co/openai/whisper-tiny.en) on the None dataset.
|
|
It achieves the following results on the evaluation set:
|
|
- Loss: 3.2102
|
|
- Cer: 48.9705
|
|
- Wer: 91.3907
|
|
- Ser: 100.0
|
|
- Cer Clean: 6.0657
|
|
- Wer Clean: 12.9139
|
|
- Ser Clean: 13.1579
|
|
|
|
## Model description
|
|
|
|
More information needed
|
|
|
|
## Intended uses & limitations
|
|
|
|
More information needed
|
|
|
|
## Training and evaluation data
|
|
|
|
More information needed
|
|
|
|
## Training procedure
|
|
|
|
### Training hyperparameters
|
|
|
|
The following hyperparameters were used during training:
|
|
- learning_rate: 5e-08
|
|
- train_batch_size: 16
|
|
- eval_batch_size: 64
|
|
- seed: 42
|
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
|
- lr_scheduler_type: linear
|
|
- lr_scheduler_warmup_steps: 10
|
|
- training_steps: 2000
|
|
- mixed_precision_training: Native AMP
|
|
|
|
### Training results
|
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Cer | Wer | Ser | Cer Clean | Wer Clean | Ser Clean |
|
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:--------:|:-----:|:---------:|:---------:|:---------:|
|
|
| 6.2196 | 1.06 | 200 | 5.5899 | 52.5320 | 112.9139 | 100.0 | 7.3456 | 14.2384 | 14.9123 |
|
|
| 5.2943 | 2.13 | 400 | 4.9201 | 52.4763 | 110.2649 | 100.0 | 7.6238 | 14.9007 | 15.7895 |
|
|
| 4.5662 | 3.19 | 600 | 4.4164 | 51.1964 | 105.6291 | 100.0 | 7.6238 | 14.9007 | 15.7895 |
|
|
| 4.0943 | 4.26 | 800 | 4.0825 | 50.5843 | 103.3113 | 100.0 | 7.1786 | 14.5695 | 14.9123 |
|
|
| 3.6948 | 5.32 | 1000 | 3.7923 | 51.5303 | 101.9868 | 100.0 | 6.3439 | 12.9139 | 13.1579 |
|
|
| 3.3742 | 6.38 | 1200 | 3.5565 | 50.3617 | 98.3444 | 100.0 | 6.3439 | 13.5762 | 14.0351 |
|
|
| 3.1519 | 7.45 | 1400 | 3.3895 | 49.0262 | 93.7086 | 100.0 | 6.3439 | 13.5762 | 14.0351 |
|
|
| 2.9995 | 8.51 | 1600 | 3.2845 | 48.6366 | 92.7152 | 100.0 | 6.3439 | 13.5762 | 14.0351 |
|
|
| 2.9152 | 9.57 | 1800 | 3.2282 | 47.9688 | 91.7219 | 100.0 | 6.0657 | 12.9139 | 13.1579 |
|
|
| 2.884 | 10.64 | 2000 | 3.2102 | 48.9705 | 91.3907 | 100.0 | 6.0657 | 12.9139 | 13.1579 |
|
|
|
|
|
|
### Framework versions
|
|
|
|
- Transformers 4.39.3
|
|
- Pytorch 2.2.2+cu121
|
|
- Datasets 2.14.5
|
|
- Tokenizers 0.15.2
|
|
|