File size: 2,858 Bytes
b55fbe6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---

license: apache-2.0
base_model: openai/whisper-tiny.en
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: abbenedekwhisper-tiny.en-finetuning3-D3K
  results: []
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# abbenedekwhisper-tiny.en-finetuning3-D3K

This model is a fine-tuned version of [openai/whisper-tiny.en](https://huggingface.co/openai/whisper-tiny.en) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.2102
- Cer: 48.9705
- Wer: 91.3907
- Ser: 100.0
- Cer Clean: 6.0657
- Wer Clean: 12.9139
- Ser Clean: 13.1579

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-08

- train_batch_size: 16

- eval_batch_size: 64

- seed: 42

- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08

- lr_scheduler_type: linear

- lr_scheduler_warmup_steps: 10
- training_steps: 2000

- mixed_precision_training: Native AMP



### Training results



| Training Loss | Epoch | Step | Validation Loss | Cer     | Wer      | Ser   | Cer Clean | Wer Clean | Ser Clean |

|:-------------:|:-----:|:----:|:---------------:|:-------:|:--------:|:-----:|:---------:|:---------:|:---------:|

| 6.2196        | 1.06  | 200  | 5.5899          | 52.5320 | 112.9139 | 100.0 | 7.3456    | 14.2384   | 14.9123   |

| 5.2943        | 2.13  | 400  | 4.9201          | 52.4763 | 110.2649 | 100.0 | 7.6238    | 14.9007   | 15.7895   |

| 4.5662        | 3.19  | 600  | 4.4164          | 51.1964 | 105.6291 | 100.0 | 7.6238    | 14.9007   | 15.7895   |

| 4.0943        | 4.26  | 800  | 4.0825          | 50.5843 | 103.3113 | 100.0 | 7.1786    | 14.5695   | 14.9123   |

| 3.6948        | 5.32  | 1000 | 3.7923          | 51.5303 | 101.9868 | 100.0 | 6.3439    | 12.9139   | 13.1579   |

| 3.3742        | 6.38  | 1200 | 3.5565          | 50.3617 | 98.3444  | 100.0 | 6.3439    | 13.5762   | 14.0351   |

| 3.1519        | 7.45  | 1400 | 3.3895          | 49.0262 | 93.7086  | 100.0 | 6.3439    | 13.5762   | 14.0351   |

| 2.9995        | 8.51  | 1600 | 3.2845          | 48.6366 | 92.7152  | 100.0 | 6.3439    | 13.5762   | 14.0351   |

| 2.9152        | 9.57  | 1800 | 3.2282          | 47.9688 | 91.7219  | 100.0 | 6.0657    | 12.9139   | 13.1579   |

| 2.884         | 10.64 | 2000 | 3.2102          | 48.9705 | 91.3907  | 100.0 | 6.0657    | 12.9139   | 13.1579   |





### Framework versions



- Transformers 4.39.3

- Pytorch 2.2.2+cu121

- Datasets 2.14.5

- Tokenizers 0.15.2