File size: 2,858 Bytes
b55fbe6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
---
license: apache-2.0
base_model: openai/whisper-tiny.en
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: abbenedekwhisper-tiny.en-finetuning3-D3K
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# abbenedekwhisper-tiny.en-finetuning3-D3K
This model is a fine-tuned version of [openai/whisper-tiny.en](https://huggingface.co/openai/whisper-tiny.en) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.2102
- Cer: 48.9705
- Wer: 91.3907
- Ser: 100.0
- Cer Clean: 6.0657
- Wer Clean: 12.9139
- Ser Clean: 13.1579
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-08
- train_batch_size: 16
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- training_steps: 2000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Cer | Wer | Ser | Cer Clean | Wer Clean | Ser Clean |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:--------:|:-----:|:---------:|:---------:|:---------:|
| 6.2196 | 1.06 | 200 | 5.5899 | 52.5320 | 112.9139 | 100.0 | 7.3456 | 14.2384 | 14.9123 |
| 5.2943 | 2.13 | 400 | 4.9201 | 52.4763 | 110.2649 | 100.0 | 7.6238 | 14.9007 | 15.7895 |
| 4.5662 | 3.19 | 600 | 4.4164 | 51.1964 | 105.6291 | 100.0 | 7.6238 | 14.9007 | 15.7895 |
| 4.0943 | 4.26 | 800 | 4.0825 | 50.5843 | 103.3113 | 100.0 | 7.1786 | 14.5695 | 14.9123 |
| 3.6948 | 5.32 | 1000 | 3.7923 | 51.5303 | 101.9868 | 100.0 | 6.3439 | 12.9139 | 13.1579 |
| 3.3742 | 6.38 | 1200 | 3.5565 | 50.3617 | 98.3444 | 100.0 | 6.3439 | 13.5762 | 14.0351 |
| 3.1519 | 7.45 | 1400 | 3.3895 | 49.0262 | 93.7086 | 100.0 | 6.3439 | 13.5762 | 14.0351 |
| 2.9995 | 8.51 | 1600 | 3.2845 | 48.6366 | 92.7152 | 100.0 | 6.3439 | 13.5762 | 14.0351 |
| 2.9152 | 9.57 | 1800 | 3.2282 | 47.9688 | 91.7219 | 100.0 | 6.0657 | 12.9139 | 13.1579 |
| 2.884 | 10.64 | 2000 | 3.2102 | 48.9705 | 91.3907 | 100.0 | 6.0657 | 12.9139 | 13.1579 |
### Framework versions
- Transformers 4.39.3
- Pytorch 2.2.2+cu121
- Datasets 2.14.5
- Tokenizers 0.15.2
|