metadata
license: mit
license_link: https://huggingface.co/microsoft/phi-2/resolve/main/LICENSE
language:
- en
widget:
- text: Hello who are you?
example_title: Identity
- text: What can you do?
example_title: Capabilities
- text: Create a fastapi endpoint to retrieve the weather given a zip code.
example_title: Coding
tags:
- convAI
- conversational
pipeline_tag: text-generation
Phi-2-super (SFT + cDPO)
Base Model: microsoft/phi-2
How to run inference:
import transformers
import torch
if __name__ == "__main__":
model_name = "abacaj/phi-2-super"
tokenizer = transformers.AutoTokenizer.from_pretrained(model_name)
model = (
transformers.AutoModelForCausalLM.from_pretrained(
model_name,
)
.to("cuda:0")
.eval()
)
messages = [
{"role": "user", "content": "Hello, who are you?"}
]
inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to(model.device)
input_ids_cutoff = inputs.size(dim=1)
with torch.no_grad():
generated_ids = model.generate(
input_ids=inputs,
use_cache=True,
max_new_tokens=512,
temperature=0.2,
top_p=0.95,
do_sample=True,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.pad_token_id,
)
completion = tokenizer.decode(
generated_ids[0][input_ids_cutoff:],
skip_special_tokens=True,
)
print(completion)
Chat template
The model uses the same chat template as found in Mistral instruct models:
text = "<|endoftext|>[INST] What is your favourite condiment? [/INST]"
"Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!<|endoftext|> "
"[INST] Do you have mayonnaise recipes? [/INST]"
You don't need to do it manually if you use the HF transformers tokenizer:
messages = [
{"role": "user", "content": "Hello, who are you?"},
{"role": "assistant": "content": "I am ..."}
]
inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to(model.device)