File size: 3,164 Bytes
09fb982 9f68fb1 09fb982 9f68fb1 823f10d 51acb36 30e03d0 9ae3ac5 c0c2ad6 9cfb35d f967096 07c59df 580d252 a2c4702 3787a2e 09fb982 9f68fb1 09fb982 9f68fb1 09fb982 9f68fb1 09fb982 9f68fb1 09fb982 9f68fb1 09fb982 9f68fb1 09fb982 9f68fb1 09fb982 9f68fb1 09fb982 9f68fb1 09fb982 9f68fb1 09fb982 9f68fb1 09fb982 9f68fb1 09fb982 9f68fb1 09fb982 9f68fb1 09fb982 9f68fb1 09fb982 9f68fb1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 |
---
tags:
- generated_from_trainer
datasets:
- squad_v2
model-index:
- name: roberta-finetuned-squad_v2
results:
- task:
type: question-answering
name: Question Answering
dataset:
name: SQuAD v2
type: squad_v2
split: validation
metrics:
- type: exact
value: 100.0
name: Exact
- type: f1
value: 100.0
name: F1
- type: total
value: 2
name: Total
- type: HasAns_exact
value: 100.0
name: Hasans_exact
- type: HasAns_f1
value: 100.0
name: Hasans_f1
- type: HasAns_total
value: 2
name: Hasans_total
- type: best_exact
value: 100.0
name: Best_exact
- type: best_exact_thresh
value: 0.9603068232536316
name: Best_exact_thresh
- type: best_f1
value: 100.0
name: Best_f1
- type: best_f1_thresh
value: 0.9603068232536316
name: Best_f1_thresh
- type: total_time_in_seconds
value: 0.036892927000735654
name: Total_time_in_seconds
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-finetuned-squad_v2
This model was trained from scratch on the squad_v2 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8582
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 512
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.9129 | 0.2 | 100 | 1.4700 |
| 1.4395 | 0.39 | 200 | 1.2407 |
| 1.2356 | 0.59 | 300 | 1.0325 |
| 1.1284 | 0.78 | 400 | 0.9750 |
| 1.0821 | 0.98 | 500 | 0.9345 |
| 0.9978 | 1.18 | 600 | 0.9893 |
| 0.9697 | 1.37 | 700 | 0.9300 |
| 0.9455 | 1.57 | 800 | 0.9351 |
| 0.9322 | 1.76 | 900 | 0.9451 |
| 0.9269 | 1.96 | 1000 | 0.9064 |
| 0.9105 | 2.16 | 1100 | 0.8837 |
| 0.8805 | 2.35 | 1200 | 0.8876 |
| 0.8703 | 2.55 | 1300 | 0.9853 |
| 0.8699 | 2.75 | 1400 | 0.9235 |
| 0.8633 | 2.94 | 1500 | 0.8930 |
| 0.828 | 3.14 | 1600 | 0.8582 |
| 0.8284 | 3.33 | 1700 | 0.9203 |
| 0.8076 | 3.53 | 1800 | 0.8866 |
| 0.7805 | 3.73 | 1900 | 0.9099 |
| 0.7974 | 3.92 | 2000 | 0.8746 |
### Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.5
- Tokenizers 0.14.1
|