File size: 1,778 Bytes
35bce03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
---
library_name: peft
tags:
- alignment-handbook
- generated_from_trainer
# base_model: /ML-A100/team/mm/zhangge/iterativeDPO/data/model/full/neo_7B_sft_v0_1_plus-dpo-iter1-beta0_3
# datasets:
# - /ML-A100/team/mm/zhangge/iterativeDPO/data/dataset/generate/neo_7B_sft_v0_1_plus-dpo-iter1-beta0_3-generate-chosen-rejected-reward
model-index:
- name: neo_7B_sft_v0_1_plus-dpo-iter2-beta0_1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# neo_7B_sft_v0_1_plus-dpo-iter2-beta0_1

This model is a fine-tuned version of [/ML-A100/team/mm/zhangge/iterativeDPO/data/model/full/neo_7B_sft_v0_1_plus-dpo-iter1-beta0_3](https://huggingface.co//ML-A100/team/mm/zhangge/iterativeDPO/data/model/full/neo_7B_sft_v0_1_plus-dpo-iter1-beta0_3) on the /ML-A100/team/mm/zhangge/iterativeDPO/data/dataset/generate/neo_7B_sft_v0_1_plus-dpo-iter1-beta0_3-generate-chosen-rejected-reward dataset.

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 3
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 128
- total_train_batch_size: 384
- total_eval_batch_size: 1024
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1

### Training results



### Framework versions

- PEFT 0.7.1
- Transformers 4.39.0.dev0
- Pytorch 2.3.0+cu121
- Datasets 2.14.6
- Tokenizers 0.15.2