File size: 2,444 Bytes
2dcfcfa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
---
base_model: THUDM/CogVideoX-2b
library_name: diffusers
license: other
tags:
- text-to-video
- diffusers-training
- diffusers
- lora
- cogvideox
- cogvideox-diffusers
- template:sd-lora
widget: []
---
<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->
# CogVideoX LoRA - Zlikwid/ZlikwidCogVideoXLoRa
<Gallery />
## Model description
These are Zlikwid/ZlikwidCogVideoXLoRa LoRA weights for THUDM/CogVideoX-2b.
The weights were trained using the [CogVideoX Diffusers trainer](https://github.com/huggingface/diffusers/blob/main/examples/cogvideo/train_cogvideox_lora.py).
Was LoRA for the text encoder enabled? No.
## Download model
[Download the *.safetensors LoRA](Zlikwid/ZlikwidCogVideoXLoRa/tree/main) in the Files & versions tab.
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import CogVideoXPipeline
import torch
pipe = CogVideoXPipeline.from_pretrained("THUDM/CogVideoX-5b", torch_dtype=torch.bfloat16).to("cuda")
pipe.load_lora_weights("Zlikwid/ZlikwidCogVideoXLoRa", weight_name="pytorch_lora_weights.safetensors", adapter_name=["cogvideox-lora"])
# The LoRA adapter weights are determined by what was used for training.
# In this case, we assume `--lora_alpha` is 32 and `--rank` is 64.
# It can be made lower or higher from what was used in training to decrease or amplify the effect
# of the LoRA upto a tolerance, beyond which one might notice no effect at all or overflows.
pipe.set_adapters(["cogvideox-lora"], [32 / 64])
video = pipe("None", guidance_scale=6, use_dynamic_cfg=True).frames[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
## License
Please adhere to the licensing terms as described [here](https://huggingface.co/THUDM/CogVideoX-5b/blob/main/LICENSE) and [here](https://huggingface.co/THUDM/CogVideoX-2b/blob/main/LICENSE).
## Intended uses & limitations
#### How to use
```python
# TODO: add an example code snippet for running this diffusion pipeline
```
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training details
[TODO: describe the data used to train the model] |