File size: 7,892 Bytes
bed96e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
######### import ###########
import os
from config import Config

opt = Config('training.yml')  # 导出为一个类




import torch
print(torch.cuda.is_available())
gpus = ','.join([str(i) for i in opt.GPU])
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"  # 表示按照PCI_BUS_ID顺序从0开始排列GPU设备。environ是一个字符串所对应环境的映像对象,environ['HOME']就代表了当前这个用户的主目录
os.environ["CUDA_VISIBLE_DEVICES"] = gpus
# os.environ["CUDA_VISIBLE_DEVICES"] = "0,1," #设置当前使用的GPU设备为1,0号两个设备,名称依次为'/gpu:0'、'/gpu:1'。表示优先使用1号设备,然后使用0号设备
torch.backends.cudnn.benchmark = True  # 加快网络运行速度

import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import utilss
from torch.utils.data import DataLoader
import random
import time
import numpy as np

from data_RGB import get_training_data, get_validation_data
from Restormer import Restormer
import losses
from warmup_scheduler import GradualWarmupScheduler
from tqdm import tqdm
from pdb import set_trace as stx
import utils

print(torch.cuda.is_available())

######### Set Seeds ###########
random.seed(1234)
np.random.seed(1234)
torch.manual_seed(1234)  # 为CPU设置种子用于生成随机数,以使得结果是确定的
torch.cuda.manual_seed_all(1234)  # 为当前所有的GPU设置随机种子;

start_epoch = 1
mode = opt.MODEL.MODE  # deraining
session = opt.MODEL.SESSION  # MPRNet

result_dir = os.path.join(opt.TRAINING.SAVE_DIR, mode, 'results', session)  # opt.TRAINING.SAVE_DIR= './checkpoints'
model_dir = os.path.join(opt.TRAINING.SAVE_DIR, mode, 'models', session)

utilss.dir_utils.mkdir(result_dir)
utilss.dir_utils.mkdir(model_dir)

train_dir = opt.TRAINING.TRAIN_DIR  # TRAIN_DIR: './Datasets/train'
val_dir = opt.TRAINING.VAL_DIR  # VAL_DIR: './Datasets/test/Rain5H'
# factor = 8


######### Model ###########
model_restoration = Restormer()


device_ids = [i for i in range(torch.cuda.device_count())]

# device = torch.device('gpu' if torch.cuda.is_available() else 'cpu')
# model_restoration = model_restoration.to(device)

print(torch.cuda.is_available())

if torch.cuda.device_count() > 1:
    print("\n\nLet's use", torch.cuda.device_count(), "GPUs!\n\n")
model_restoration.cuda()  # 将模型加载到GPU上去。这种方法不被提倡,而建议使用model.to(device)的方式,这样可以显示指定需要使用的计算资源,特别是有多个GPU的情况下。

new_lr = opt.OPTIM.LR_INITIAL  # LR_INITIAL: 2e-4

optimizer = optim.Adam(model_restoration.parameters(), lr=new_lr, betas=(0.9, 0.999), eps=1e-8)

######### Scheduler ###########
warmup_epochs = 3
scheduler_cosine = optim.lr_scheduler.CosineAnnealingLR(optimizer, opt.OPTIM.NUM_EPOCHS - warmup_epochs,
                                                        eta_min=opt.OPTIM.LR_MIN)  # torch.optim 调整学习率

scheduler = GradualWarmupScheduler(optimizer, multiplier=1, total_epoch=warmup_epochs,
                                   after_scheduler=scheduler_cosine)  # warmup_scheduler中 优化器

######### Resume ###########
if opt.TRAINING.RESUME:  # RESUME: False
    path_chk_rest = utilss.get_last_path(model_dir, '_latest.pth')
    utilss.load_checkpoint(model_restoration, path_chk_rest)
    start_epoch = utilss.load_start_epoch(path_chk_rest) + 1
    utilss.load_optim(optimizer, path_chk_rest)

    for i in range(1, start_epoch):
        scheduler.step()
    new_lr = scheduler.get_lr()[0]
    print('------------------------------------------------------------------------------')
    print("==> Resuming Training with learning rate:", new_lr)
    print('------------------------------------------------------------------------------')

if len(device_ids) > 1: # 有多个GPU则可以进行数据并行运算
    print("有多个GPU,可以进行数据并行运算")
    model_restoration = nn.DataParallel(model_restoration, device_ids=device_ids)

######### Loss ###########
criterion_char = losses.CharbonnierLoss()
criterion_edge = losses.EdgeLoss()

######### DataLoaders ###########

train_dataset = get_training_data(train_dir, {'patch_size':opt.TRAINING.TRAIN_PS})  # TRAIN_PS: 256
# print("train_dataset.shape: ",train_dataset.shape)
train_loader = DataLoader(dataset=train_dataset, batch_size=opt.OPTIM.BATCH_SIZE, shuffle=True, num_workers=8,
                          drop_last=False, pin_memory=True)  # BATCH_SIZE: 16
# print("train_loader.shape: ",train_loader.size)

val_dataset = get_validation_data(val_dir, {'patch_size':opt.TRAINING.VAL_PS})  # VAL_PS: 128
val_loader = DataLoader(dataset=val_dataset, batch_size=16, shuffle=False, num_workers=4, drop_last=False,
                        pin_memory=True)

print('===> Start Epoch {} End Epoch {}'.format(start_epoch, opt.OPTIM.NUM_EPOCHS + 1))  # NUM_EPOCHS: 250
print('===> Loading datasets')

best_psnr = 0
best_epoch = 0

for epoch in range(start_epoch, opt.OPTIM.NUM_EPOCHS + 1):
    epoch_start_time = time.time()
    epoch_loss = 0
    train_id = 1

    model_restoration.train()
    for i, data in enumerate(tqdm(train_loader), 0):

        # zero_grad
        for param in model_restoration.parameters():
            param.grad = None

        target = data[0].cuda()
        input_ = data[1].cuda()
        # target = data[0].to(device)
        # input_ = data[1].to(device)
        print("before in model,input_.shape:    ",input_.shape)

        if hasattr(torch.cuda, 'empty_cache'):
	        torch.cuda.empty_cache()

        restored = model_restoration(input_)

        # Compute loss at each stage
        loss_char = criterion_char(restored, target)
        loss_edge = criterion_edge(restored, target)

        loss = (loss_char) + (0.05 * loss_edge)

        loss.backward()
        optimizer.step()
        epoch_loss += loss.item()

    #### Evaluation ####
    # VAL_AFTER_EVERY: 5
    if epoch % opt.TRAINING.VAL_AFTER_EVERY == 0:
        model_restoration.eval()
        psnr_val_rgb = []
        for ii, data_val in enumerate((val_loader), 0):
            target = data_val[0].cuda()
            input_ = data_val[1].cuda()
            # target = data_val[0].to(device)
            # input_ = data_val[1].to(device)

            restored = 0
            with torch.no_grad():
                restored = model_restoration(input_)
            

            for res, tar in zip(restored, target):
                psnr_val_rgb.append(utilss.torchPSNR(res, tar))

        psnr_val_rgb = torch.stack(psnr_val_rgb).mean().item()

        if psnr_val_rgb > best_psnr:
            best_psnr = psnr_val_rgb
            best_epoch = epoch
            torch.save({'epoch': epoch,
                        'state_dict': model_restoration.state_dict(),
                        'optimizer': optimizer.state_dict()
                        }, os.path.join(model_dir, "model_best.pth"))

        print("[epoch %d PSNR: %.4f --- best_epoch %d Best_PSNR %.4f]" % (epoch, psnr_val_rgb, best_epoch, best_psnr))

        torch.save({'epoch': epoch,
                    'state_dict': model_restoration.state_dict(),
                    'optimizer': optimizer.state_dict()
                    }, os.path.join(model_dir, f"model_epoch_{epoch}.pth"))

    scheduler.step()

    print("------------------------------------------------------------------")
    print("Epoch: {}\tTime: {:.4f}\tLoss: {:.4f}\tLearningRate {:.8f}".format(epoch, time.time() - epoch_start_time,
                                                                              epoch_loss, scheduler.get_lr()[0]))
    print("------------------------------------------------------------------")

    torch.save({'epoch': epoch,
                'state_dict': model_restoration.state_dict(),
                'optimizer': optimizer.state_dict()
                }, os.path.join(model_dir, "model_latest.pth"))